From Tetris to Relational Reinforcement Learning

Dr. Yang Gao (gaoy@nju.edu.cn)
Mr. Shen Ge, Mr. Weiwei Wang, Mr. Xingguo Chen
State Key Laboratory for Novel Software Technology, Nanjing University

MLA’07, Nanjing
Outline

• Tetris
• Learn optimal policy by reinforcement learning (RL)
• RL + function approximation is enough?
• Features of Tetris
• Towards first order logic
• Markov logic networks
• Conclusion
Tetris (1)

- Rewards (scores) = number of cleared lines

Tetris is a falling-blocks puzzle video game originally designed and programmed by Alexey Pajitnov in 1985.
Tetris (2)

• Play the “offline” version of Tetris, where the initial board and piece sequence are known, is **NP-hard**. [Demaine et al., 2003]

- Artificial Tetris player [Ramon and Driessens, 2004]
 - **500,000 lines** when they only include information about the falling block.
 - **5,000,000 lines** when the next block is considered.
Known algorithms

- Average scores of various algorithms [Szita and Lorincz, 2006]
 - Non-reinforcement learning algorithms
 - Reinforcement learning algorithms
Abstract of Tetris

- **State space (S):**
 - $2^{200\times7\times4\times10(7)} > 10^{60}$

- **Action (A):**
 - Drop, turn, right, left

- **Goal:**
 - Maximize the expected rewards (scores).

Sequence decision problem.
Modeling Tetris

• **Markov Decision Process (MDP)**
 - A set of States: S
 - A set of Actions: A
 - Reward function: $r : S \times A \rightarrow \mathbb{R}$
 and
 - State transition function: The next block's shape is undetermined.
 $$P : S \times A \rightarrow S$$

• However, the model of Tetris is unknown in advance. Planning (or optimizing) is infeasible in Tetris.
Unknown MDP

Tetris

Model

Algorithm

MLA’07, Nanjing
Learn model or learn optimal policy?

- **Learn model**
 - By *Monte Carlo sampling*, can learn (or estimate) the model.
 - Given the estimated model, use planning technology to obtain the optimal policy.

- **Learn optimal policy**
 - By *trial-and-error*, get some experiences (or samples) \((s,a,s',r)\)
 - Learn the optimal policy from experiences directly.
Key question: how to predict the long term rewards

- Return function

discounted - parameter $\gamma < 1$.

$$return = \sum_{i=0}^{\infty} \gamma^i r(s_i, a_i)$$

undiscounted or average reward

$$return = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} r(s_i, a_i)$$

- Bellman equation

 - Using **iterative method** to compute the return (value) function
Bellman equation given the determined policy \(\Pi \)

The basic idea (in one episode):

\[
R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} \ldots \\
= r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^2 r_{t+4} \ldots \right) \\
= r_{t+1} + \gamma R_{t+1}
\]

So, in many episodes:

\[
V^\pi(s) = E_\pi \left\{ R_t \mid s_t = s \right\} \\
= E_\pi \left\{ r_{t+1} + \gamma V(s_{t+1}) \mid s_t = s \right\}
\]

Or, without the expectation operator:

\[
V^\pi(s) = \sum_{s'} P_{ss'} \left[R_{ss'}^a + \gamma V^\pi(s') \right]
\]

is unknown
Temporal-Difference learning

Simple Monte Carlo method:
\[V(s_t) \leftarrow V(s_t) + \alpha [R_t - V(s_t)] \]

target: the actual return after time \(t \).

The simplest TD method, TD(0):
\[V(s_t) \leftarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]

target: an estimate of the return.

The detail materials can be found in the talk of MLA'04.
Q-learning

• For each $s \xrightarrow{a} s'$, calculate/predict the Q values.

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r_{s,s'}^a + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

• The optimal policy:

$$\Pi^*(s) \leftarrow \arg \max_a Q(s, a)$$
Average reward reinforcement learning algorithm

- Average reward G-learning algorithm

\[G(s, a) \leftarrow G(s, a) + \alpha \left[r_{s,s'}^a - g(s_0) + \max_{a'} G(s', a') - G(s, a) \right] \]

if \(s = s_0 \), \(g(s_0) \leftarrow \max_a G(s_0, a) \)

The detail materials can be found in the talk of MLA’06.
How to speed up the learning process

- **Problem**: large state space
 - State space: 10*20 grids, 7 shapes and 10 locations.
 - Action space: 4 actions.

- **Solution**: in similar state-action pairs, the Q-value may be similar.

- **Technical points**: using function approximation to general the Q-values.

Question: after learn a Q(s,a), when will visit the state ‘s’ again?
RL + function approximation

• Neural network et al.

Subset of states \(\rightarrow \) learnt values as inputs

\[Q_0 \rightarrow M(Q_0) \rightarrow \Gamma(M(Q_0)) \rightarrow M(\Gamma(M(Q_0))) \rightarrow \Gamma(M(\Gamma(M(Q_0)))) \rightarrow \cdots \]
Large Scale MDP

Markov Decision Process

RL + FA

Average RL Algorithm

Tetris

Model

Algorithm

MLA’07, Nanjing
Features of states & actions

• Relative features
 - Height of wall (max, avg, min)
 - Number of Holes
 - Height difference adjacent cols
 - Canyon (width, height)
 - ...

• Macro actions
 - Fits
 - Increases height, ...
 - Number of deleted lines

Good features beat good learning! [Feng, MLA07]
Some discussions and thinking...

- Classical RL
 - Use look-up table
- RL + FA
 - Use function to generalize the Q-table
- Relative features
 - Use features to generalize the Q-table

Is it enough?
Relational domain

- **Challenges** [Tadepalli et al., 2004]
 - Function approximation
 - Prior Knowledge
 - Generalization across objects
 - Transfer learning across tasks
 - Run-time planning and reasoning
Relational reinforcement learning

• RRL
 - Reinforcement learning + relational representation

• Relational representation
 - Represents value function as a first order logic regression tree

• Algorithms
 - TG algorithm [Driessens et al, 2001]
 - RIB (instance based algorithm) [Driessens and Ramon, 2003]
 - KBR (kernel based algorithm) [Gartner et al, 2003]
Decision Tree

- Each **internal node** of a decision tree contains a **test**.
- Decision trees **partition** the whole **example space** and **assign class values** to each example.
- **Make prediction**
 - Starts in the root of the tree
 - Applies a test to the example
 - Propagates the example to the corresponding subtree
 - Leaf is the prediction
First order logical decision tree

• Differences between LDT and DT
 - Example: *a relational database*
 - Test: *query*

• Example 1: (s, a, Q)
 - Q-value(1)
 - WidCanyon(b, 1)
 - HeightCanyon(b, 4)
 - Hole(3,2)
 - NumHoles(1)
 - Hight(3,3)
 - Shape(a, 'O')
 - Drop(1,'O',vert)
For example: a LDT

MLA'07, Nanjing
Relational RL algorithm

- **RRL algorithm** [Driessens et al, 2001]
 - 0. Represent the state and action with relational method, initialize the Q-values
 - 1. Run the first episode
 - Choose the action randomly
 - 2. Obtain examples (s,a,Q)
 - 3. Use TG algorithm to expand tree
 - 4. Run next episode
 - Choose the action according to the tree
 - Update the Q-value
 - 5. Return step 2
TG algorithm (1)

- Build first order logical tree
 - Create an empty leaf
 - While (examples available)
 - Sort example down to leaf
 - Update statistics in leaf
 - If (split needed)
 - Create two empty leaves
- The heuristical rule is same as in C4.5.
Example 1

State:
WidCanyon(1,2),---column 1, width 2
HeightCanyon(1,3),---column 1, height 3
Hole(3,2),
NumHoles(1),
Height(3,3),
Height(4,3),
Height(5,3),

Action:
Drop(1,'O',Vertical)---Put Shape 'O' on column 1 with direction Vertical

Qvalue:
Qvalue(1)---1 line is cleared
Example 2

State:
WidCanyon(1,2),---column 1, width 2
HeightCanyon(1,3),---column 1, height 3
Hole(3,2), Hole(5,1)
NumHoles(2),
Height(1,1), Height(2,1),
Height(3,4), Height(4,3),
Height(5,3),

Action:
Drop(1,'O',Vertical)---Put Shape 'O' on column 1 with direction Vertical

Qvalue:
Qvalue(1)---1 line is cleared
Example 3

State:
- WidCanyon(1,1), ---column 1, width 1
- HeightCanyon(1,3), ---column 1, height 3
- Hole(3,2),
- NumHoles(1),
- Height(2,3), Height(3,3),
- Height(4,3), Height(5,3),

Action:
- Drop(1,'L',Vertical)---Put Shape 'L' on column 1 with direction Vertical

Qvalue:
- Qvalue(0)---No line is cleared
Example 4

State:
WidCanyon(1,2),---column 1, width 2
HeightCanyon(1,3),---column 1, height 4
Hole(3,1),
NumHoles(1),
Height(3,3),
Height(4,3),
Height(5,3),

Action:
Drop(1,L,Vert)---Put Shape 'L' on column 1 with direction Vertical

Qvalue:
Qvalue(0)---No line is cleared
How to build first order logical tree?

WidCanyon(A,B), HeightCanyon(C,D), NumHoles(E), Drop(F,G,H)

- WidCanyon(A,2)
 - yes
 - no
 - Drop(F,'O',H)
 - yes
 - no
 - Qvalue=1 (example 1,2)
 - Qvalue=0 (example 3)
- Qvalue=0 (example 4)
 - NumHoles(1)
 - NumHoles(2)
TG algorithm (2)

- TG algorithm
 - When stop to split the leaf node?

- Tree updated algorithm
 - New examples, update the tree incrementally

- Test to choose an action
 - Test all possible actions, combine any possible example, according to the tree to get their Q-values.
Logical MDP

Large Scale MDP

Unknown MDP

Relational RL

RL + FA

Average RL Algorithm

Tetris

Model

Algorithm

MLA’07, Nanjing
Prior Knowledge

• Formula 1
 - 'If exist a canyon whose width is 2 and the shape of dropping block is I, put the block in the canyon, then the canyon’s width is 1.'
Markov logic networks

• What is MLN?
 - First order logic
 • Constants, variables, functions, predicates, formulas
 - Markov network
Explain

• Prior knowledge
 - ‘If exist a canyon whose width is 2 and the shape of dropping block is I, put the block in the canyon, then the canyon’s width is 1.’

• First-order logic

\[\exists x, \exists y \quad \text{WidCanyon}(x, 2) \land \text{BlockShape}(y, O) \land \text{Drop}(y, x) \implies \text{WidCanyon}(x, 1) \]

• Clausal form

\[\neg \text{WidCanyon}(x, 2) \lor \neg \text{BlockShape}(y, I) \lor \neg \text{Drop}(y, x) \lor \text{WidCanyon}(x, 1) \]

• Weight
 - 0.8
Markov logic network

WidCanyon(x,2)

BlockShape(y,I)

Drop(y,x)

WidCanyon(x,1)
Example

State:
WidCanyon(1,1),---column 1, width 1
HeightCanyon(1,2),---column 1, height 2
Height(2,1),
Height(3,2),
Height(4,2),
Height(5,1)

Action:
Drop(1,'I',Vertical)---Put Shape 'O' on column 1 with direction Vertical

Qvalue:
Qvalue(1)---1 line is cleared
How to predict?

- **WidCanyon(x,2)**
- **BlockShape(y,I)**
- **Drop(y,x)**
- **WidCanyon(x,1)**

Compute the probability of WidCanyon(x,1) using MLN

Then compute the Q-value by LDT

Choose the predict (action) to maximize the Q-value
Conclusion

- Traditional reinforcement learning
 - Too large state space, to re-visit it.
- RL + FA
 - Propagate the Q values to similar states.
- Features
 - Similar states have same features.
- Relational RL
 - Compute which feature is most important.
- Markov logic network

Doing the task is not difficult, Describing the task is difficult.
Thanks ...

• [Driessens et al, 2001] Driessens K., Ramon J., Blockeel H. Speeding up relational reinforcement learning through the use of an incremental first order decision tree learner Lecture Notes in Computer Science 2167.

