Efficient SVM Optimization without an Optimizer

James Kwok

Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Hong Kong

Joint work with Ivor Tsang, Andras Kocsor

November 2007, Nanjing
Outline

1. Introduction
2. Core Vector Machine
3. Ball Vector Machine
4. Experiments
5. Conclusion
Supervised learning: classification / regression

- e.g., text classification
- e.g., face detection (video surveillance, digital camera)

standard digital camera: 10M pixels

Kernel method: Support vector machines (SVM) / support vector regression
Support Vector Machines (SVM)

Classification problem:

- training set \(\{(x_i, y_i)\}_{i=1}^{m}, x_i \in \mathbb{R}^d, y_i \in \{\pm 1\} \) (labels)

Large-margin method: Maximize the margin separating opposite classes
Maximizing the Margin

Let the (linear) classifier be $w'x + b$

$$\begin{align*}
\min & \quad \frac{1}{2} \|w\|^2 \quad \text{(primal)} \\
\text{s.t.} & \quad w'x_i + b \geq 1, \quad \text{if } y_i = 1, \\
& \quad w'x_i + b \leq -1, \quad \text{if } y_i = -1 \\
\max & \quad \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j x'_i x_j \\
\text{s.t.} & \quad \sum_{i=1}^{m} \alpha_i y_i = 0, \quad \alpha_i \geq 0 \quad \text{(dual)}
\end{align*}$$

(α_i : Lagrange multiplier)

Quadratic programming (QP) problem (globally optimal solution)
Support vectors: patterns with $\alpha_i > 0$
Kernel Trick

Classifier: linear → nonlinear

- map the data from input space to feature space \mathcal{F} using φ

Only inner products in \mathcal{F} are needed: $\varphi(x_i)'\varphi(x_j) \rightarrow k(x_i, x_j)$
SVM Optimization

Needs a QP solver

Problem 1
Needs $O(m^2)$ memory just to write down $m \times m$ kernel matrix

$$= [k(x_i, x_j)]_{i,j=1}^m \quad (m \text{ training examples})$$

- If $m = 20,000$ and it takes 4 bytes to represent a kernel entry, we would need 1.6Gbytes to store the kernel matrix

Problem 2
Involves inverting the kernel matrix $\rightarrow O(m^3)$ time

Key observation
Near-optimal approximate solutions are often good enough in practical applications
Core Vector Machine (CVM) [Tsang, Kwok, Cheung 2005]

1. Formulate kernel methods as minimum enclosing ball problems
2. Obtain approximately optimal solutions efficiently with the use of core-sets

Classification
- one/two-class CVM [Tsang, Kwok & Cheung, (JMLR) 2005]
- one-class classification with Bregman divergence [Nock & Nielsen, (ECML) 2005]
- cluster based CVM [Asharaf, Murty & Shevade, (ICDM) 2006]
- multiclass CVM [Asharaf, Murty & Shevade, (ICML) 2007]

Regression
- core vector regression [Tsang, Kwok & Lai, (ICML) 2005]

Semi-supervised learning
- sparsified LapCVM [Tsang & Kwok, (NIPS) 2006]

Others
- coreset learning [Har-Peled, Roth & Zimak, (IJCAI) 2007]
- feature extraction [Tsang, Kocsor & Kwok, (KDD) 2006]
Minimum Enclosing Ball (MEB) ⇔ SVM

A problem in Computational Geometry

Given $\mathcal{S} = \{\mathbf{x}_1, \ldots, \mathbf{x}_m\}$, minimum enclosing ball of \mathcal{S} (MEB(\mathcal{S})):

- the smallest ball $B(\mathbf{c}, R)$ that contains all \mathbf{x}'s in \mathcal{S}

(primal) \quad \min_{R, \mathbf{c}} \quad R^2

\quad \text{s.t.} \quad \|\mathbf{c} - \varphi(\mathbf{x}_i)\|^2 \leq R^2, \quad i = 1, \ldots, m

(dual) \quad \max_{\alpha} \quad \alpha' \text{diag}(\mathbf{K}) - \alpha' \mathbf{K} \alpha

\quad \text{s.t.} \quad \alpha' \mathbf{1} = 1, \quad \alpha \geq 0

- $\alpha = [\alpha_1, \ldots, \alpha_m]'$: Lagrange multipliers
- $\mathbf{K}_{m \times m} = [k(\mathbf{x}_i, \mathbf{x}_j)]$: kernel matrix
- $\mathbf{0} = [0, \ldots, 0]'$, $\mathbf{1} = [1, \ldots, 1]'$
Assume \(k(x, x) = \kappa \), a constant \(\quad (1) \)

Holds for

1. isotropic kernel \(k(x, y) = K(\|x - y\|) \) (e.g., Gaussian)
2. dot product kernel \(k(x, y) = K(x'y) \) (e.g., polynomial) with normalized inputs
3. any normalized kernel \(k(x, y) = \frac{K(x,y)}{\sqrt{K(x,x)}\sqrt{K(y,y)}} \)

Combine with \(\alpha'1 = 1 \), we have \(\alpha'\text{diag}(K) = \kappa \)

\[
\max_{\alpha} -\alpha' K\alpha : \alpha \geq 0, \quad \alpha'1 = 1
\]

Conversely, whenever the kernel \(k \) satisfies (??),

Any QP of the form in (??) \(\leftrightarrow \) a MEB problem
Example: Two-Class SVM

\[
\max_{\alpha} -\alpha' K \alpha : \alpha' 1 = 1, \alpha \geq 0
\]

\[
\{ z_i = (x_i, y_i) \}_{i=1}^m
\]

(primal) \[
\min_{w, b, \rho, \xi_i} \|w\|^2 + b^2 - 2\rho + C \sum_{i=1}^m \xi_i^2 : y_i(w' \varphi(x_i) + b) \geq \rho - \xi_i
\]

(dual) \[
\max_{\alpha} -\alpha' \left(K \odot yy' + yy' + \frac{1}{C} I \right) \alpha : \alpha \geq 0, \alpha' 1 = 1
\]

\[
\tilde{K} = \left[y_i y_j k(x_i, x_j) + y_i y_j + \frac{\delta_{ij}}{C} \right], \text{ with } \tilde{k}(z, z) = \kappa + 1 + \frac{1}{C} \text{ (constant)}
\]
Approximate MEB Algorithm

• Finding **exact** MEBs is **inefficient** for large d

 - $(1 + \epsilon)$-approximation
 - the $(1 + \epsilon)$-expansion of the blue ball contains all the points
 - the blue ball is the MEB of the red points (**coreset**)

Approximate MEB algorithm [Bădoiu & Clarkson, 2002]

1. At the tth iteration, the current estimate $B(c_t, r_t)$ is expanded **incrementally** by including the furthest point outside the $(1 + \epsilon)$-ball $B(c_t, (1 + \epsilon)r_t)$
 - we relax it to any point outside $B(c_t, (1 + \epsilon)r_t)$
2. Repeat until all the points in S are covered by $B(c_t, (1 + \epsilon)r_t)$
Example
Example
Example
Example
Example
Core Vector Machine (CVM)
Numerical Optimization

CVM algorithm

1. Initialize $c_0 = \varphi(z_0)$, $R_0 = 0$ and $S_0 = \{\varphi(z_0)\}$.
2. Terminate if no $\varphi(z)$ falls outside $B(c_t, (1 + \epsilon)R_t)$. Otherwise, let $\varphi(z_t)$ be such a point. Set $S_{t+1} = S_t \cup \{\varphi(z_t)\}$.
3. **Find MEB(S_{t+1})**
4. Increment t by 1 and go back to step 2

Numerical solver is still required in finding MEB(S_t)
- QP subproblem
- Requires the use of a sophisticated numerical solver for an efficient implementation
 - LIBSVM
- For complicated/very large data sets \Rightarrow internal optimization can be expensive

Question

Can we have a simpler algorithm without using any numerical solver?
Enclosing Ball (EB) Problem

CVM \leftrightarrow minimum enclosing ball

Minimum Enclosing Ball (MEB) Problem

Find the smallest ball $B(c, r)$ that encloses all the points in S

- some optimization appears inevitable

Enclosing Ball (EB) Problem

Given the radius $r \geq R^*$, find a ball $B(c, r)$ that encloses all the points in S

- $\|c - \varphi(z_i)\|^2 \leq r^2$ for all $\varphi(z)$'s in S
Ball Vector Machine (BVM)

$(1 + \epsilon)$-approximation algorithm for $\text{EB}(S, r)$

1. Initialize $c_0 = \varphi(z_0)$
2. Terminate if no $\varphi(z)$ falls outside $B(c_t, (1 + \epsilon)r)$. Otherwise, let $\varphi(z_t)$ be such a point
3. Find the smallest update to the center such that $B(c_{t+1}, r)$ touches $\varphi(z_t)$
4. Increment t by 1 and go back to step 2

CVM algorithm

1. Initialize $c_0 = \varphi(z_0)$, $R_0 = 0$ and $S_0 = \{\varphi(z_0)\}$.
2. Terminate if no $\varphi(z)$ falls outside $B(c_t, (1 + \epsilon)R_t)$. Otherwise, let $\varphi(z_t)$ be such a point. Set $S_{t+1} = S_t \cup \{\varphi(z_t)\}$
3. Find $\text{MEB}(S_{t+1})$
4. Increment t by 1 and go back to step 2

BVM is similar to CVM except that the update of the ball's center is different
Example
Efficient Update of the Ball’s Center

At the tth iteration, the ball’s center is updated such that the new ball just touches $\varphi(z_t)$

$$\min_c \| c - c_t \|^2 : r^2 \geq \| c - \varphi(z_t) \|^2$$

The new center can be obtained analytically as

$$c_{t+1} = \varphi(z_t) + \beta_t (c_t - \varphi(z_t))$$

- $\beta_t = r / \| c_t - \varphi(z_t) \|$
- no numerical optimization solver is needed!

c_{t+1} is a convex combination of c_t and $\varphi(z_t)$

- for any $t > 0$, c_t is always a linear combination of c_0 and $S_t = \{ \varphi(z_i) \}_{i=1}^t$
- distance between c_{t+1} and any pattern $\varphi(z)$ can be computed efficiently
Quality of Prediction

Let $B(\hat{c}, (1 + \epsilon)r)$ be any $(1 + \epsilon)$-approximation of $EB(S, r)$, then

$$\frac{\|\hat{c} - c^*\|}{R^*} \leq \sqrt{\frac{(1+\epsilon)^2 r^2}{R^*^2}} - 1$$

Recall that for the L2-SVM:

$$\min_{w, b, \xi_i, \rho} \|w\|^2 + b^2 - 2\rho + C \sum_{i=1}^{n} \xi_i^2$$

s.t. $y_i(w'\varphi(x_i) + b) \geq \rho - \xi_i, \quad i = 1, \ldots, n,$

$c = [w', b, \sqrt{C}\xi_1, \ldots, \sqrt{C}\xi_n]'$

For any input x,

- optimal prediction function $f^*(x) = w^*'\varphi(x) + b^*$
- approximated prediction function $\hat{f}(x) = \hat{w}'\varphi(x) + \hat{b}$

$$|\hat{f}(x) - f^*(x)| = \left| (\hat{w} - w^*)'\varphi(x) + (\hat{b} - b^*) \right| \leq \sqrt{\|\hat{c} - c^*\|^2} \sqrt{k_{ii}} + 1$$

ϵ small $\Rightarrow \|\hat{c} - c^*\|^2$ small $\Rightarrow \hat{f}(x)$ close to $f^*(x)$
Theorem 1 in [Panigraphy, 2004]
When a point falling outside $B(c_t, (1 + \epsilon)r)$ is picked
- BVM algorithm obtains an $(1 + \epsilon)$-approximation of $EB(S, r)$ in $O(1/\epsilon^2)$ iterations
- overall time complexity: $O(1/\epsilon^4)$

When the furthest point is picked
- BVM algorithm obtains an $(1 + \epsilon)$-approximation of $EB(S, r)$ in $O(1/\epsilon)$ iterations
- computing such a point takes $O(m|S_t|)$
- overall time complexity: $O(m/\epsilon^2)$
 \Rightarrow computationally expensive for large m
Multi-Scale \((1 + \epsilon)\)-Approximation Algorithm for \(EB(S, r)\)

Idea

- Instead of using a small \(\epsilon\) from the very beginning, start with a much larger \(\epsilon' = 2^{-1}\)
- After an \((1 + \epsilon')\)-approximation of \(EB(S, r)\) has been obtained, reduce \(\epsilon'\) by half and repeated until \(\epsilon' = \epsilon\)

Assume that \(2^{-1} \geq \epsilon = 2^{-M}\) for some positive integer \(M\)

1. Initialize \(c_{EB_0} = \varphi(z_0)\).
2. For \(m = 1\) to \(M\) do
3. Set \(\epsilon_m = 2^{-m}\). Find \((1 + \epsilon_m)\)-approximation of \(EB(S, r)\) using BVM Algorithm, with \(c_{EB_{m-1}}\) as warm start

In finding the EB, only requires \(\varphi(z_t)\) to be outside \(B(c_t, (1 + \epsilon)r)\)

\[\Rightarrow \text{avoid expensive distance computations}\]
Multi-Scale Approximation Algorithm...

Converges in at most $3 \log_2 \frac{1}{\epsilon} + \left(1 - \frac{R^*}{r^2}\right) \frac{1}{\epsilon^2} + \frac{6}{\epsilon}$ iterations

$r = R^*$
- number of iteration is $O(1/\epsilon)$
- time complexity $O(1/\epsilon^2)$
- space complexity $O(1/\epsilon)$

$r \rightarrow R^*$
- the $1/\epsilon^2$ term becomes negligible
- number of iteration is close to $O(1/\epsilon)$

cf. CVM takes $O(1/\epsilon^8)$ time and $O(1/\epsilon^2)$ space
How to Set r in the SVM Setting?

Primal:
\[
\min \|w\|^2 + b^2 - 2\rho + C \sum_{i=1}^{m} \xi_i^2 \\
\text{s.t. } y_i(w'\varphi(x_i) + b) \geq \rho - \xi_i
\]

Dual:
\[
\max -\alpha' (K \odot yy' + yy' + \frac{1}{C} I) \alpha \\
\text{s.t. } \alpha \geq 0, \; \alpha'1 = 1
\]

\[
\tilde{k}_{ij} = y_iy_jk(x_i, x_j) + y_iy_j + \frac{\delta_{ij}}{C}
\]

\[\tilde{k}_{ii} = k_{ii} + \frac{1}{C} \equiv \tilde{\kappa}. \text{ Set } r = \sqrt{\tilde{\kappa}}\]

$\sqrt{\kappa} \geq R^*$, where R^* is the radius of the MEB

Often, $r = \sqrt{\tilde{\kappa}} \simeq R^*$

- ϵ is small and $r \simeq R^*$, center of this EB problem is close to the center of MEB
- ball’s center \leftrightarrow SVM’s weight and bias
- the obtained BVM is also close to the desired SVM solution
Varying ϵ ("letter", "usps")

- BVM and CVM have high accuracies for $\epsilon \in [10^{-8}: 10^{-3}]$
- performance deteriorates when ϵ is further increased

- training time and number of support vectors are stable for $\epsilon \leq 10^{-4}$
- BVM training is faster than CVM
Varying C ("reuters", "usps")

- BVM has almost the same accuracies as LIBSVM
- training time and number of support vectors obtained by BVM (with $\epsilon \geq 10^{-4}$) are comparable with those of LIBSVM
Both BVM and CVM have comparable accuracies as the other implementations.
Different Kernels (‘‘usps’’)

<table>
<thead>
<tr>
<th></th>
<th>normalized polynomial kernel</th>
<th></th>
<th>Gaussian kernel</th>
<th>Laplacian kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$d = 2$</td>
<td>$d = 3$</td>
<td>$d = 4$</td>
<td></td>
</tr>
<tr>
<td>accur. (%)</td>
<td>BVM</td>
<td>99.39</td>
<td>99.54</td>
<td>99.63</td>
</tr>
<tr>
<td></td>
<td>CVM</td>
<td>99.48</td>
<td>99.54</td>
<td>99.64</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>99.42</td>
<td>99.60</td>
<td>99.64</td>
</tr>
<tr>
<td></td>
<td>LASVM</td>
<td>99.43</td>
<td>99.62</td>
<td>99.64</td>
</tr>
<tr>
<td>CPU time</td>
<td>BVM</td>
<td>51.26</td>
<td>52.67</td>
<td>66.16</td>
</tr>
<tr>
<td></td>
<td>CVM</td>
<td>47.12</td>
<td>94.42</td>
<td>214.40</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>1,808.28</td>
<td>2,506.49</td>
<td>3,642.42</td>
</tr>
<tr>
<td></td>
<td>LASVM</td>
<td>1,424.28</td>
<td>1,156.23</td>
<td>1,770.63</td>
</tr>
<tr>
<td>#SV</td>
<td>BVM</td>
<td>665</td>
<td>691</td>
<td>793</td>
</tr>
<tr>
<td></td>
<td>CVM</td>
<td>453</td>
<td>783</td>
<td>1,353</td>
</tr>
<tr>
<td></td>
<td>LIBSVM</td>
<td>1,428</td>
<td>2,326</td>
<td>3,544</td>
</tr>
<tr>
<td></td>
<td>LASVM</td>
<td>933</td>
<td>1,899</td>
<td>3,187</td>
</tr>
</tbody>
</table>

Both BVM and CVM are fast and have good performance
Data Sets

<table>
<thead>
<tr>
<th>data sets</th>
<th>#class</th>
<th>dim</th>
<th>#train patns.</th>
<th>#test patns</th>
</tr>
</thead>
<tbody>
<tr>
<td>optdigits</td>
<td>10</td>
<td>64</td>
<td>3,823</td>
<td>1,797</td>
</tr>
<tr>
<td>satimage</td>
<td>6</td>
<td>36</td>
<td>4,435</td>
<td>2,000</td>
</tr>
<tr>
<td>w3a</td>
<td>2</td>
<td>300</td>
<td>4,912</td>
<td>44,837</td>
</tr>
<tr>
<td>pendigits</td>
<td>10</td>
<td>16</td>
<td>7,494</td>
<td>3,498</td>
</tr>
<tr>
<td>reuters</td>
<td>2</td>
<td>8,315</td>
<td>7,770</td>
<td>3,299</td>
</tr>
<tr>
<td>letter</td>
<td>26</td>
<td>16</td>
<td>15,000</td>
<td>5,000</td>
</tr>
<tr>
<td>web</td>
<td>2</td>
<td>300</td>
<td>49,749</td>
<td>14,951</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>2</td>
<td>22</td>
<td>49,990</td>
<td>91,701</td>
</tr>
<tr>
<td>extended usps</td>
<td>2</td>
<td>676</td>
<td>266,079</td>
<td>75,383</td>
</tr>
<tr>
<td>intrusion</td>
<td>2</td>
<td>127</td>
<td>4,898,431</td>
<td>311,029</td>
</tr>
</tbody>
</table>
Testing Accuracies (in %)

<table>
<thead>
<tr>
<th>data</th>
<th>BVM</th>
<th>CVM</th>
<th>LIBSVM</th>
<th>LASVM</th>
<th>SimpleSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>optdigits</td>
<td>96.38</td>
<td>96.38</td>
<td>96.77</td>
<td>N/A</td>
<td>96.88</td>
</tr>
<tr>
<td>satimage</td>
<td>89.35</td>
<td>89.55</td>
<td>89.55</td>
<td>N/A</td>
<td>89.65</td>
</tr>
<tr>
<td>w3a</td>
<td>97.89</td>
<td>97.80</td>
<td>97.70</td>
<td>97.72</td>
<td>97.42</td>
</tr>
<tr>
<td>pendigits</td>
<td>97.97</td>
<td>97.85</td>
<td>97.91</td>
<td>N/A</td>
<td>97.97</td>
</tr>
<tr>
<td>reuters</td>
<td>96.75</td>
<td>96.96</td>
<td>97.15</td>
<td>97.09</td>
<td>–</td>
</tr>
<tr>
<td>letter</td>
<td>94.47</td>
<td>94.12</td>
<td>94.25</td>
<td>N/A</td>
<td>94.23</td>
</tr>
<tr>
<td>web</td>
<td>99.13</td>
<td>99.09</td>
<td>99.01</td>
<td>98.93</td>
<td>–</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>97.58</td>
<td>98.67</td>
<td>98.19</td>
<td>98.42</td>
<td>94.10</td>
</tr>
<tr>
<td>usps</td>
<td>99.42</td>
<td>99.52</td>
<td>99.53</td>
<td>99.53</td>
<td>–</td>
</tr>
<tr>
<td>intrusion</td>
<td>91.97</td>
<td>92.44</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- BVM and CVM have accuracies comparable with the other SVM implementations
- Only BVM and CVM (but neither LIBSVM nor LASVM) can work on “intrusion” (with around 5 million training examples)
CPU Time (in sec) used in SVM Training

<table>
<thead>
<tr>
<th>data</th>
<th>BVM</th>
<th>CVM</th>
<th>LIBSVM</th>
<th>LASVM</th>
<th>SimpleSVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>optdigits</td>
<td>1.65</td>
<td>24.86</td>
<td>1.79</td>
<td>N/A</td>
<td>81.15</td>
</tr>
<tr>
<td>satimage</td>
<td>1.82</td>
<td>14.81</td>
<td>1.06</td>
<td>N/A</td>
<td>221.01</td>
</tr>
<tr>
<td>w3a</td>
<td>0.85</td>
<td>13.82</td>
<td>1.46</td>
<td>1.54</td>
<td>1384.34</td>
</tr>
<tr>
<td>pendigits</td>
<td>1.31</td>
<td>12.10</td>
<td>0.82</td>
<td>N/A</td>
<td>41.22</td>
</tr>
<tr>
<td>reuters</td>
<td>6.32</td>
<td>63.51</td>
<td>9.76</td>
<td>13.81</td>
<td>–</td>
</tr>
<tr>
<td>letter</td>
<td>19.87</td>
<td>215.73</td>
<td>10.85</td>
<td>N/A</td>
<td>1290.55</td>
</tr>
<tr>
<td>web</td>
<td>32.59</td>
<td>54.46</td>
<td>168.84</td>
<td>178.73</td>
<td>–</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>99.95</td>
<td>62.78</td>
<td>57.96</td>
<td>140.25</td>
<td>2201.35</td>
</tr>
<tr>
<td>usps</td>
<td>150.46</td>
<td>288.96</td>
<td>1578.27</td>
<td>753.09</td>
<td>–</td>
</tr>
<tr>
<td>intrusion</td>
<td>0.73</td>
<td>0.70</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- BVM is usually faster than CVM, and is faster/comparable with the other implementations.
Number of Support Vectors

<table>
<thead>
<tr>
<th>data</th>
<th>BVM</th>
<th>CVM</th>
<th>LIBSVM</th>
<th>LASVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>optdigits</td>
<td>1583</td>
<td>2154</td>
<td>1306</td>
<td>N/A</td>
</tr>
<tr>
<td>satimage</td>
<td>1956</td>
<td>2333</td>
<td>1433</td>
<td>N/A</td>
</tr>
<tr>
<td>w3a</td>
<td>694</td>
<td>1402</td>
<td>1072</td>
<td>979</td>
</tr>
<tr>
<td>pendigits</td>
<td>1990</td>
<td>2827</td>
<td>1206</td>
<td>N/A</td>
</tr>
<tr>
<td>reuters</td>
<td>925</td>
<td>1496</td>
<td>1356</td>
<td>1359</td>
</tr>
<tr>
<td>letter</td>
<td>10536</td>
<td>12440</td>
<td>8436</td>
<td>N/A</td>
</tr>
<tr>
<td>web</td>
<td>2522</td>
<td>2960</td>
<td>4674</td>
<td>5718</td>
</tr>
<tr>
<td>ijcnn1</td>
<td>4006</td>
<td>3637</td>
<td>5700</td>
<td>5525</td>
</tr>
<tr>
<td>usps</td>
<td>1524</td>
<td>2576</td>
<td>2178</td>
<td>1803</td>
</tr>
<tr>
<td>intrusion</td>
<td>99</td>
<td>51</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- All obtain comparable numbers of support vectors
- On the large data sets (“reuters”, “web”, “ijcnn1”, “usps” and “intrusion”), CVM and, even better, BVM can have fewer support vectors
MNIST Digits Database

An extended MNIST digit database

- the original training set contains 60,000 patterns with 784 features
- Loosli, Canu & Bottou [2007] extended the training set to 8.1 million patterns by incorporating 135 transformations

Using all 8.1M patterns

<table>
<thead>
<tr>
<th></th>
<th>BVM</th>
<th>LASVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>accuracy (%)</td>
<td>98.66</td>
<td>99.33</td>
</tr>
<tr>
<td>CPU time (s)</td>
<td>8 hours</td>
<td>(8 days)</td>
</tr>
</tbody>
</table>

Using 1/3 of the training patterns

<table>
<thead>
<tr>
<th></th>
<th>BVM</th>
<th>LIBSVM</th>
<th>LASVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>#misclassified patterns</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>accuracy (in %)</td>
<td>99.91</td>
<td>99.86</td>
<td>99.91</td>
</tr>
<tr>
<td>CPU time (s)</td>
<td>238.33</td>
<td>7981.48</td>
<td>1797.43</td>
</tr>
<tr>
<td>#support vectors</td>
<td>1,605</td>
<td>2,183</td>
<td>1,618</td>
</tr>
</tbody>
</table>
Enclosing Ball (EB) problem is simpler than Minimum Enclosing Ball (MEB) problem

- update of c_t does not require any numerical solver
- multi-scale $(1 + \epsilon)$-approximation algorithm for faster convergence

⇒ easy to implement
⇒ BVM is faster than CVM

Experimentally,

- BVM’s accuracy is comparable with the other SVM implementations
- usually faster than CVM, and is faster/comparable with others
- can handle very large data sets
- can have fewer support vectors