Making Super-Large Scale Machine Learning Possible

Tie-Yan Liu
Principle Researcher/Research Manager
Microsoft Research Asia
Era of Big Data and Big Model

Search engine index: 10^{10} pages (10^{12} tokens)

Search engine logs: 10^{12} impressions and 10^9 clicks every year

Social networks: 10^9 nodes and 10^{12} edges

Peacock: LDA with 10^5 topics (10^{10} parameters); More topics \rightarrow better performance in click predictions

DistBelief: DNN with 10^{10} weights; Deeper and larger networks \rightarrow better performance with sufficient training data.

Human brain: 10^{11} neurons and 10^{15} connections, much larger than any existing ML model.
Existing Approach to Big Machine Learning

• Parallelization of existing machine learning algorithms using either MapReduce or Parameter Server

Iterative MapReduce / AllReduce
- Only synchronous updates (BSP, MA, ADMM), poor efficiency on heterogeneous clusters
- Only data parallelism, cannot handle big models

Parameter Server
- Support asynchronous updates; better efficiency on heterogeneous clusters
- Support model parallelism, but inefficient, especially on heterogeneous clusters.
- Only support fixed-structure models
- “sum”, “average”, and “addition” as atomic aggregation operations
Iterative MAP-Reduce
BSP, ADMM and Model Average

\[
\begin{align*}
\min_w & \sum_{i=1}^{N} L_i(w) \\
& \quad \text{s.t. } w_i - z = 0, i = 1, \ldots, N \\
& \quad \Delta w_i^t = -\eta_t \nabla L_i(w_i^t) \\
& \quad w_i^{t+1} = w_i^t + \sum_l \Delta w_i^t \\
& \quad w_i^t = w^t \\
& \quad z^{t+1} = \frac{1}{N} \sum_{i=1}^{N} w_i^t \\
& \quad w_i^{t+1} = z^{t+1} \\
& \quad \lambda_i^{t+1} = \lambda_i^t + \rho (w_i^{t+1} - z^{t+1}) \\
& \quad \text{arg min}_{w_i} \left\{ \sum_{i} (L_i(w_i) + (\lambda_i^t)^T (w_i - z^t) + \frac{\rho}{2} \| w_i - z^t \|^2_2) \right\} \\
\end{align*}
\]
Parameter Server
ASP: Asynchronous Parallel

Workers push update to parameter server and/or pull latest parameter back.

1. $\Delta \omega$

2. ω

Worker 1
Worker 2
Worker 3
Worker 4

Parameter Server

Time
SSP: Stale Synchronous Parallel

Workers push update to parameter server and/or pull latest parameter back

When staleness=4, worker 3 will wait here for worker 1 to catch up.
Model Parallelism
Limitations of Existing Approaches

• Scalability
 • Hard to train a topic model with millions of topics, or a DNN model with trillions of weights.

• Efficiency
 • 2+ days for 3000 CPU cores to finish the training of Peacock LDA.
 • 3 days for 16,000 CPU cores to finish the training of DistBelief DNN.

• Flexibility
 • Not many other big models beyond LDA and DNN were extensively studied in the literature.
Desirable System for Big Machine Learning

- Web data (trillions of tokens)
- Click logs (trillions of impressions)
- Social networks (trillions of edges)

- Gradient boosting trees
- Decision trees / Random forest
- Ensemble models

- LDA (millions of topics)
- CNN (trillions of activations)
- DNN (trillions of edge weights)
- Word embedding (millions of words)

- Almost linear speed up, even on heterogeneous clusters
- Reasonable training time even for big data and big model
How to Achieve It?

Algorithmic Innovation

• Machine learning algorithms themselves need to have sufficiently high efficiency and throughout.

• Existing design/implementation of machine learning algorithms might not have considered this request; redesign/re-implementation might be needed.

System Innovation

• One needs to leverage the full power of distributed system, and pursue almost linear scale out/speed up.

• New distributed training paradigm needs to be invented in order to revolve the bottle neck of existing distributed machine learning systems.
Algorithmic Innovation
Case Studies

• **LightLDA**: Highly efficient LDA algorithm (with $O(1)$ amortized per-token sampling complexity) by using multiplicative factorization.

• **Distributed Word Embedding**: Highly scalable word embedding algorithm by using histogram-based data sampler.
Latent Dirichlet Allocation (LDA)

- For document d, sample a topic distribution θ_d from a Dirichlet distribution with parameter α.
- Sample a word distribution φ_k for each topic k from a Dirichlet distribution with parameter β.
- For each token i in document d:
 - Sample a specific topic z_{di} from topic distribution θ_d.
 - Sample a word from word distribution $\varphi_{z_{di}}$.

[Blei, et al. 2003]
Collapsed Gibbs Sampling

• Sampling from a closed-form conditional probability of topics, by integrating out θ and φ:

$$p(k) = p(z_{di} = k|\text{rest}) \propto \frac{n_{kw}^{-di} + \beta_w}{n_{kd}^{-di} + \bar{\beta}} (n_{kd}^{-di} + \alpha_k)$$

- n_{kd}^{-di}: number of tokens assigned to topic k.
- n_{kw}^{-di}: number of tokens with word w assigned to topic k.
- α_k, β_w: hyperparameters.

Per-token sampling complexity proportional to the number of topics: $O(K)$, thus hard to scale up to large number of topics.
Reduce Complexity by Amortizing Computations

Alias Table [Walker, 1977]
- Build alias table for some terms in $p(k)$ and reuse it across many tokens (introducing approximation error)

Metropolis Hastings [Hastings, 1970]
- Handle approximation error using a rejection procedure.
 - Given original $p(k)$ and its approximation $q(k)$
 - Sample according to $q(k)$ followed by a rejection procedure based on the difference between $q(k)$ and $p(k)$
 - $r \sim U(0,1)$, $s \rightarrow t$
 - Accept t as next state if $r < \min\left\{1, \frac{q(t)q(s)}{p(s)q(t)}\right\}$
 - Stationary distribution of the above Markov chain is exactly $p(k)$; mixing rate depends on the difference between $p(k)$ and $q(k)$.

Alias table construction: transform non-uniform distribution to uniform in $O(K)$ time; sample from uniform distribution in $O(1)$ time.

[Walker, 1977] [Hastings, 1970]
Amortizability

<table>
<thead>
<tr>
<th>Terms</th>
<th>n_{kd}</th>
<th>n_{kw}</th>
<th>$n_{kd} \cdot n_{kw}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias table construction</td>
<td>For each document d, in $O(L_d)$ time</td>
<td>For each word, in $O(KV)$ time</td>
<td>For each document and word, in $O(L_d V)$ time</td>
</tr>
<tr>
<td>Reused for</td>
<td>Only tokens in document d</td>
<td>All documents</td>
<td>Only tokens in document d</td>
</tr>
<tr>
<td>Amortized O(1)?</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

For each document d, in $O(L_d)$ time. For each word, in $O(KV)$ time. For each document and word, in $O(L_d V)$ time.
SparseLDA [Yao, et al. 2009]

- Decompose $p(k)$ into additive terms, then sample the terms using the mixture approach

$$p(z_{di} = k | rest) \propto \frac{\alpha_k \beta_w}{n_k^{-di} + \beta} + \frac{n_{kd}^{-di} \beta_w}{n_k^{-di} + \beta} + \frac{n_{kw}^{-di}(n_{kd}^{-di} + \alpha_k)}{n_k^{-di} + \beta}$$

Amortizable $\rightarrow O(1)$

Unamortizable but sparse $\rightarrow O(K_w)$

Non-zero elements in word-topic table $\{n_{kw}^{-di}\}$

Per-token complexity: $O(K_w) \ll O(K)$

K_w: number of topics word w belongs to
AliasLDA [Li, et al. 2014]

- Decompose $p(k)$ into additive terms, then sample the terms using the mixture approach

$$p(z_{di} = k | \text{rest}) \propto \frac{n_{kd}^{-di}(n_{kw}^{-di} + \beta_w)}{n_k^{-di} + \beta} + \frac{\alpha_k(n_{kw}^{-di} + \beta_w)}{n_k^{-di} + \beta}$$

Unamortizable but sparse $\rightarrow O(K_d)$

Amortizable $\rightarrow O(1)$

Non-zero elements in doc-topic table $\{n_{kd}^{-di}\}$

Per-token complexity: $O(K_d) \ll O(K_w) \ll O(K)$

K_d: number of topics document d contains
LightLDA

• Factorize $p(k)$ into *multiplicative* terms, instead of decomposing it into *additive* terms
 • Separate n^{-di}_{kd} and n^{-di}_{kw} into different terms, so as to avoid the issue of unamortizability.
 • All terms after factorization only contain either n^{-di}_{kd}, n^{-di}_{kw}, or constant, thus a O(1) sampling complexity can be achieved by Alias and MH methods.

• The mixture approach does not naturally work for multiplicative factorization - we use a cycling approach instead.

[Yuan, et al. 2015]
Multiplicative Factorization

\[p(z_{di} = k | \text{rest}) \propto \frac{n_{kw}^{-di} + \beta_w}{n_k^{-di} + \bar{\beta}} (n_{kd}^{-di} + \alpha_k) \]

Amortizable: \(O(1) \)

Other tricks: (1) sparsified alias table to further reduce the sampling complexity of \(p_1(k) \); (2) fully leverage in-memory intermediate result to simply the sampling complexity of \(p_2(k) \).
Experimental Results (Single-core)

LightLDA achieves better log-likelihood than SparseLDA and AliasLDA in much shorter time!

NYTimes Dataset
- 300K documents

With a single core only, LightLDA uses 20 hours to train 10K topics from ~1B tokens (PubMed). With a commodity machine of 20 cores, LightLDA can finish training in 2 hours. This single-machine capability is equivalent to (if not beyond) a medium-size cluster of SparseLDA or AliasLDA.
Case Studies

- **LightLDA**: Highly efficient LDA algorithm (with $O(1)$ amortized per-token sampling complexity) by using multiplicative factorization.

- **Distributed Word Embedding**: Highly scalable word embedding algorithm by using histogram-based data sampler.
Word Embedding

Native Discrete Representation

Word: 1-of-N vector

\[
\{w_1, w_2, \ldots, w_i, \ldots, w_{N-1}, w_N\}
\]

\[
\langle 0, 0, \ldots, 1, \ldots, 0, 0 \rangle
\]

Representations in Continuous Space

- State-of-the-art machine learning methods require data to be in a continuous space
- Continuous representation eases text understanding, inference, and reasoning

Deep Learning

- Training data: text corpus
- Sliding window

Natural Languages

- \(w_{(i-2)}w_{(i-1)}w_{(i)}w_{(i+1)}w_{(i+2)} \)
- \(V \): vocabulary size
- 1-of-V word representation: \(w_{(i+2)} = (0,...,0,1,0,...,0)^T \)
Word2Vec (Skip-Gram)

Promising Accuracy on analogical reasoning

- Evaluate linear regularity of word embedding, e.g., the accuracy of [China– Beijing+ Tokyo] = [Japan]?

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Questions</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikolov</td>
<td>19544</td>
<td>31.30%</td>
</tr>
</tbody>
</table>

- Training data: enwiki9
- Dimension of word embedding: 100
Training Word Embedding Using Entire Web

• Challenge: Web data are simply too large to copy, store, and process!

\[\text{Wikipedia} \quad \sim 1 \text{ billion words} \]

\[\text{Tier-0:} \quad \sim 15 \text{ trillion words} \\
(\sim 150 \text{ trillion word pairs, } \sim 1 \text{PB data}) \]

\[
\begin{align*}
\text{~1000 machines with 1TB disk are required to store training data; and} \\
\text{~5000 machines with 200GB memory to support in-memory training.}
\end{align*}
\]
SGD Training for Word2Vec (Skip-Gram)

• Skip-gram training is based on stochastic gradient descent (SGD)
 • Read one word pair from the training corpus
 • Compute gradient for this pair, and update the model
 • Repeat this process until the model converges (after many epochs)

• SGD converges and is an unbiased estimate of gradient descent
 • When the training instances (word pairs) are i.i.d. sampled.
 • Under this assumption, only the distribution matters, but not necessarily the raw data set.
Histogram-based Sampler

- Obtain empirical distribution (word pair histogram) of the training corpus using MapReduce at the beginning of the training process.
- Train word embedding model using SGD, by sampling from the empirical distribution instead of the original text corpus, for an arbitrary number of epochs when needed.

Word pair histogram $H(w_i, w_j)$

Original Web Data (~1PB) → Map-Reduce → Training Data

Stochastic sampling

(~1.5TB)
Histogram Re-shape

- Smoothed histogram to handle truncation bias in limited number of sampling

\[
\begin{align*}
\text{min} & \quad \sum_i \frac{1}{H(w_i)} |\epsilon_i|^2 \\
\text{s.t.} & \quad H(w_i) + \epsilon_i \geq T, \forall i. \\
& \quad \sum_i \epsilon_i = 0
\end{align*}
\]

Similar to original empirical histogram
\(\text{(relative change is minimized)} \)
Each word has at least T counts
The total count remains unchanged

To satisfy hard constraint \(H(w_i) + \epsilon_i \geq T \), for those pairs whose \(H(w_i) < T \), the modification \(\epsilon_i \) is lower bounded and the minimization of the loss function will push \(\epsilon_i = T - H(w_i) \).

For those pairs whose \(H(w_i) \geq T \), the optimal solution \(\epsilon_i \) will be proportional to \(H(w_i) \), i.e.,
\[
\epsilon_i = \frac{-H(w_i)}{\sum_{H(w_i) \geq T} H(w_i)} \sum_{H(w_i) < T} T - H(w_i)
\]
Experimental Results

Accuracy Curve on Analogical Reasoning Task

Accuracy of Histogram Based Sampler Accuracy of Standard WordVec
System Innovations
A New Distributed ML Framework

Multiverso Server

- **Efficiency - Hybrid Model Store**
 - Aggregation of model updates
 - Send model to clients

- **Flexibility – Customizable Model Representation and Aggregations**

 - Client updates
 - Client requests
 - Server responses

 Message queue

 Communicator Thread

 Update Parameter
 Get Parameter

Multiverso Client

- **Efficiency – Automatic Pipelining**
- **Scalability – Model Scheduling**

 - Pre-fetch parameter for next data block

 - Model Scheduling
 - Automatic pipelining

 Parameter loading thread

 Training threads

 Intermediate Data store

 Data store

 Local Model Store

 Update cache

 Parameter request

 Server responses

 Client updates

 Communicator Thread

 Server processing threads

 Hybrid model store

 Message queue
Scalability: Problem with Model Parallelism

- **High comm cost:** huge intermediate data
 - LDA: $O(10^9)$
 - 10^6 docs/data block $\times 10^3$ tokens/doc
 - CNN: $O(10^9)$
 - 10^2 imgs/mini-batch $\times 10^5$ patches/img $\times 10$ filters/patch $\times 10$ layers

- **Sensitive to comm delay & machine failure**
 - Speed differences among machines \rightarrow slow down training.
 - Machine failure \rightarrow break down training.

- SGD-like algorithms require intermediate results for every data sample to be transferred between machines.
Scalability: Tackle the Challenges

• Model parallelism might be necessary from system perspective
 • Ensure the same behavior of distributed training with single machine training

• However, it is not necessary from machine learning perspective
 • Machine learning is statistical: achieving similar results (in large probability) is enough, not necessarily preserving exactly the same behaviors.

• Our proposal
 • Change gradient descent to (block) coordinate descent
 • Allow one-round communication delay
Scalability: Model Scheduling

- Model slices are pulled from server and updated in a round robin fashion.

Parameters in the slice and hidden-node activations triggered by the slice are updated.

When updating \(\text{Slice}_1 \), previous information about \(\text{Slice}_2 \) is reused.

when updating \(\text{Slice}_2 \), previous information about \(\text{Slice}_1 \) is reused.

\[w_{i,j} \in \text{slice}_1 \]

\[w_{i,j} \in \text{slice}_2 \]

Intermediate Data

- Other activations are retrieved from historical storage in local machine
- e.g., activations in DNN, Doc-topic table in LDA

Timeline

Stochastic (Block) Coordinate Descent (SCD)
Scalability: Model Scheduling

Theoretical guarantee

SCD and SGD have the similar convergence rate for λ-strongly convex problem; and both lead to local optima for non-convex problems.

Practical efficiency

- Lower comm cost (only model is transferred)
- Robust to comm delay & machine failure

<table>
<thead>
<tr>
<th></th>
<th>Model Parallelism</th>
<th>Model Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>Data $\sim O(10^9)$</td>
<td>Model $\sim O(10^7)$</td>
</tr>
<tr>
<td>CNN</td>
<td>Data $\sim O(10^9)$</td>
<td>Model $\sim O(10^4)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Model Parallelism</th>
<th>Model Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates</td>
<td>Synchronous</td>
<td>Asynchronous</td>
</tr>
</tbody>
</table>
Efficiency: Hybrid Model Store

Typical scenarios

- **Huge sparse model**
 - Example: topic model
 - Dense format is prohibitively large and unnecessary

- **Screwed model access**
 - Example: word embedding
 - 0.1% terms are used in 90% training samples

Goal: High memory usage + model access speed

Multi-tier storage

- Separate storage of terms with different access frequencies
- High cache hit rate
- Balance between memory usage and access speed

Hybrid Store format

- Frequent term \(\rightarrow\) topic vector is sparse \(\rightarrow\) Hash table \(O(K)\)
- Rare term \(\rightarrow\) topic vector is dense \(\rightarrow\) Dense Array \(O(1)\).
Efficiency: Adaptive Pipelining

• Adaptively determine the optimal setting to match learning algorithms, disk speed, CPU/GPU speed, and network speed.

Perfect pipelining:
\[T_1 = T_2 = T_3 = T_4 \]

Adaptive pipelining:
\[\min_{\Delta D, \Delta M, N} \sum_{i,j} |T_i - T_j|^2 \]

• Online algorithm to adjust \(\Delta D, \Delta M, N \).
• Efficient optimization since all \(T_i \)'s are monotone functions w.r.t. \(\Delta D, \Delta M, N \).

Cluster situations:
• Network speed: \(S_N \)
• CPU/GPU speed: \(S_C \)
• Disk speed: \(S_D \)

Multiverso settings
• Data block size: \(\Delta D \)
• Model slice size: \(\Delta M \)
• Number of threads: \(N \)
Flexibility: Customizable Model Representation and Aggregations

• Beyond matrix-form models and sum/average aggregation operators.

Interface IAggregation
{
 public bool Aggregate(void* models, enum agg_type);
}

Class ParallelModel: IAggregation
{
 public virtual bool Aggregate(void* models,
 void* inter_data, enum agg_type);
 private void* _models;//model parameters
 private void* _inter_data;//intermediate variables
}

//Pre-defined models data structure in Multiverso:
//Matrix (sparse/dense), Trees.

//Pre-defined aggregation operations:
//Weighted sum, Average, Voting, Max, Min, Histogram merge.

For DNN/Logistic Regression/LDA:
• models = (sparse) matrix
• agg_type = Sum/Average

For FastRank/Decision trees:
• models = trees (with split point information) + histogram
• agg_type = max info gain/histogram merge

For Ensemble Models:
• models = trees + (sparse) matrix + ...
• agg_type = voting/max/min/weighted sum

For other algorithms, one can implement their own model data structures and aggregation operators.
Flexibility: Plug-in Mode

- Scenario: existing codebase; model is dense and can fit into local machine memory.
- Examples: CNTK, CNN for image classification.

Tiny Code Changes

- Model serialization and deserialization
- Sync up with Multiverso server

Multiverso Server

- Model aggregation logic (optional)

Client SDK

- Injected sync-up logics in training iterations

```
// Initial parameter server
printf("Initial parameter server... in\n")
multiversoServer = new MultiversoServer();
multiversoServer->Init(adapterID, strConfig);
printf("connected to the parameter server. \n")

// Get model from parameter server finished
\_convNet->GetModelFromMultiverso();

for (int i = 0; i < GetNumMiniBatches(); i++)
  \_convNet->Prop(i, \_test ? PASS_TEST : PASS_TRAIN);
  \_convNet->GetCost(batchCost);
  if (!\_test)
    \_convNet->Prop(PASS_TRAIN);
  \_convNet->UpdateWeights();

if (i & _sendIntery == 0)
  \_convNet->SubmitModelToMultiverso(); //submit the update parameter finished
if (i & _recvIntery == 0)
  \_convNet->GetModelFromMultiverso(); //get model from parameter server

// Training batch finished
if (!\_test)
  { //force to sync up in the last step
    \_convNet->SubmitModelToMultiverso();
    \_convNet->GetModelFromMultiverso();
  }
```
Flexibility: Embedded Mode

- Scenario: model exceeds single machine memory; sparse model training (only a small subset of model parameters are used when training a data block).
- Examples: LightLDA, Word Embedding, Logistic Regression.

User needs to define:
- Data block & model slices
- Train logic for one data block
- Model parsing and update logics

Multiverso client manages the pipelining of the following procedures:
- Training threads to obtain model updates
- Parameter loading thread to fetch model slices
- Local aggregation thread to aggregate and send out updates

Project template integrated with Visual Studio to assist algorithm developer.
Record Breaking: Model Size & Training Speed

Topic Models:

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Data Scale</th>
<th>Model Scale</th>
<th>#Core</th>
<th>Training time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed LightLDA</td>
<td>10^{11}</td>
<td>10^{13}</td>
<td>384</td>
<td>60 hrs</td>
</tr>
<tr>
<td>Peacock LDA (Tencent)</td>
<td>10^9</td>
<td>10^{10}</td>
<td>3,000</td>
<td>50 hrs</td>
</tr>
<tr>
<td>Alias LDA (Google, Baidu, CMU)</td>
<td>10^{10}</td>
<td>10^{10}</td>
<td>10,000</td>
<td>70 hrs</td>
</tr>
</tbody>
</table>

Word2vec:

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Data Scale</th>
<th>Model Scale</th>
<th>#Core</th>
<th>Training time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Word Embedding</td>
<td>10^{11}</td>
<td>10^{10}</td>
<td>96</td>
<td>40 hrs</td>
</tr>
<tr>
<td>Word2Vec (Google)</td>
<td>10^{11}</td>
<td>10^{8}</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Rich Learning Algorithms on Multiverso

<table>
<thead>
<tr>
<th>LightLDA</th>
<th>Word2Vec</th>
<th>GBDT</th>
<th>LSTM</th>
<th>CNN</th>
<th>Online FTRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20M vocab, 1M topics</td>
<td>10M vocab, 1000 dim</td>
<td>3000 trees (120-node)</td>
<td>20M parameters (4 hidden layer, LSTM)</td>
<td>60M parameters (AlexNet)</td>
<td>800M parameters (Logistic Regression)</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200B tokens (Bing web chunk)</td>
<td>200B samples (Bing web chunk)</td>
<td>7M records (Bing HRS data)</td>
<td>375 hrs speech data (Win phone data)</td>
<td>2M images (ImageNet 1K dataset)</td>
<td>6.4B impressions (Bing Ads click log)</td>
</tr>
<tr>
<td>Training time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 hrs on 24 machines (nearly linear speed-up)</td>
<td>40 hrs on 8 machines (nearly linear speed-up)</td>
<td>3 hrs on 8 machines (4x of speed-up)</td>
<td>11180 on 4 GPU (3.8x speed-up)</td>
<td>2 hrs on 16 GPU cards (12x speed-up)</td>
<td>2400s on 24 machines (12x speed-up)</td>
</tr>
</tbody>
</table>

Our New Platform
Open Source

• Releasing to Github
 • https://github.com/Microsoft/multiverso
 • Containing a parameter server based framework, LightLDA and distributed word embedding

• Next steps:
 • Release more distributed machine learning algorithms, and new features of Multiverso.
Future Research

• Data exchange vs. model exchange
• Data server vs. parameter server
• Adaptive communication filters
• Automatic hyper-parameter tuning
• Machine learning for distributed machine learning
Thanks!

tyliu@microsoft.com

http://research.microsoft.com/users/tyliu/