Optimization in Alibaba: Beyond Convexity

Jian Tan
Machine Intelligent Technology
阿里巴巴达摩院
机器智能技术部 | 智能决策
Theories on non-convex optimization:

Part 1. Parallel restarted SGD: it finds first-order stationary points
(why model averaging works for Deep Learning?)

Part 2. Escaping saddle points in non-convex optimization
(first-order stochastic algorithms to find second-order stationary points)

System optimization: BPTune for an intelligent database (from OR/ML perspectives)

A real complex system deployment
Combine pairwise DNN, active learning, heavy-tailed randomness ...

Part 3. Stochastic (large deviation) analysis for LRU caching
Learning as Optimization

• Stochastic (non-convex) optimization

\[\min_{x \in \mathbb{R}^d} f(x) = \mathbb{E}[F(x; \xi)] \]

• \(\xi \): random training sample

• \(f(x) \): has Lipschitz continuous Gradient

\[||\nabla f(x) - \nabla f(y)|| \leq L ||x - y|| \]
Non-Convex Optimization is Challenging

Many local minima & saddle points

For stationary points $\nabla f(x) = 0$ (first-order stationary)

$\nabla^2 f(x) > 0 \iff$ Local minimum

$\nabla^2 f(x) < 0 \iff$ Local maximum

$\nabla^2 f(x)$ has both $+/-$ eigenvalues \iff saddle points

$\nabla^2 f(x)$ has $0/+ \text{eigenvalues}$

\iff Degenerate case: could be either local minimum or saddle points

In general, finding global minimum of non-convex optimization is NP-hard
Instead ...

- For some applications, e.g., matrix completion, tensor decomposition, dictionary learning, and certain neural networks,

Good news: local minima
- Either all local minima are all global minima
- Or all local minima are close to global minima

Bad news: saddle points
- Poor function value compared with global/local minima
- Possibly many saddle points (even exponential number)
Finding First-order Stationary Points (FSP)

- **Stochastic Gradient Descent (SGD):**
 \[x_{t+1} = x_t - \eta \nabla F(x_t; \xi_t) \]

- Complexity of SGD (Ghadimi & Lan, 2013, 2016; Ghadimi et al., 2016; Yang et al., 2016):
 - \(\varepsilon \)-FSP, \(\mathbb{E}[\|\nabla f(x)\|^2] \leq \varepsilon^2 \): Iteration complexity \(O(1/\varepsilon^4) \)

- Improved Iteration complexity based on Variance Reduction:
 - SCSG (Lei et al., 2017): \(O(1/\varepsilon^{10/3}) \)

- Workhorse of deep learning
Part 1:

Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging works for Deep Learning

Hao Yu, Sen Yang, Shenghuo Zhu (AAAI 2019)

• One server is not enough:
 • too many parameters, e.g., deep neural networks
 • huge number of training samples
 • training time is too long

• Parallel on N servers:
 • With N machines, can we be N times faster? If yes, we have the linear speed-up (w.r.t. # of workers)
Classical Parallel mini-batch SGD

- The classical Parallel mini-batch SGD (PSGD) achieves $O\left(\frac{1}{\sqrt{NT}}\right)$ convergence with N workers [Dekel et al. 12]. PSGD can attain a linear speed-up.

Each iteration aggregates gradients from every workers. Communication too high!

Can we reduce the communication cost? Yes, model averaging.
Algorithm 1 Parallel Restarted SGD

1: **Input:** Initialize $x_i^0 = \bar{y} \in \mathbb{R}^m$. Set learning rate $\gamma > 0$ and node synchronization interval (integer) $I > 0$

2: **for** $t = 1$ to T **do**

3: Each node i observes an unbiased stochastic gradient G_i^t of $f_i(\cdot)$ at point x_i^{t-1}

4: **if** t is a multiple of I, i.e., $t \% I = 0$, **then**

5: Calculate node average $\bar{y} \equiv \frac{1}{N} \sum_{i=1}^{N} x_i^{t-1}$

6: Each node i in parallel updates its local solution

$$x_i^t = \bar{y} - \gamma G_i^t, \quad \forall i$$ (2)

7: **else**

8: Each node i in parallel updates its local solution

$$x_i^t = x_i^{t-1} - \gamma G_i^t, \quad \forall i$$ (3)

9: **end if**

10: **end for**
Model Averaging

• Each worker train its local model + (periodically) average on all workers
 • **One-shot averaging**: [Zindevich et al. 2010, McDonalt et al. 2010] propose to average only once at the end.
 • [Zhang et al. 2016] shows averaging once can leads to poor solutions for non-convex opt and suggest more frequent averaging.

• If averaging every I iterations, how large is I?
 • One-shot averaging: $I=T$
 • PSGT: $I=1$
Why $I=1$ works?

• If we average models each iteration ($I=1$), then it is equivalent to PSGD.

• What if we average after multiple iterations periodically ($I>1$)?
 Converge or not? Convergence rate? Linear speed-up or not?
Empirical work

• There has been a long line of empirical works ...
 • [Zhang et al. 2016]: CNN for MNIST
 • [Chen and Huo 2016] [Su, Chen, and Xu 2018]: DNN-GMM for speech recognition
 • [McMahan et al. 2017]: CNN for MNIST and Cifar10; LSTM for language modeling
 • [Kaamp et al. 2018]: CNN for MNIST
 • [Lin, Stich, and Jaggi 2018]: Res20 for Cifar10/100; Res50 for ImageNet

• These empirical works show that "model averaging" = PSGD with significantly less communication overhead!

• Recall PSGD = linear speed-up
Model Averaging: almost linear speed-up in practice

- Good speed up (measured in wall time used to achieve target accuracy)
- I: averaging intervals ($I=4$ means “average every 4 iterations”)
- Resnet20 over CIFAR10

- Figure 7(a) from “Tao Lin, Sebastian U. Stich, and Martin Jaggi 2018, Don’t use large mini-batches, use local SGD”
Related work

• For strongly convex opt, [Stich 2018] shows the convergence (with linear speed-up w.r.t. # of workers) is maintained as long as the averaging interval $I < O(\sqrt{T}/\sqrt{N})$.

• Why model averaging achieves almost linear speed-up for deep learning (non-convex) in practice for $I > 1$?
Main result

• Prove “model averaging” (communication reduction) has the same convergence rate as PSGD for non-convex opt under certain conditions

If the averaging interval $I = O(T^{-4}/N^{-4})$, then model averaging has the convergence rate $O(\frac{1}{\sqrt{NT}})$.

• "Model averaging" works for deep learning. It is as fast as PSGD with significantly less communication.
Control bias-variance after I iterations

- Focus on

$$\bar{x}^t = \frac{1}{N} \sum_{i=1}^{N} x_i^t$$

average of local solution over all N workers

- Note...

$$\bar{x}^t = \bar{x}^{t-1} - \gamma \frac{1}{N} \sum_{i=1}^{N} G_i^t$$

G_i^t: independent gradients sampled at different points x_i^{t-1}

- PSGD has i.i.d. gradients at \bar{x}^{t-1}, which are unavailable at local workers without communication
Technical analysis

• Bound the difference between \bar{x}^t and x_i^t

Our Algorithm ensures $E[||\bar{x} - x_i||^2] \leq 4\gamma^2 I^2 G^2, \forall i, \forall t$

• The rest part uses the smoothness and shows

$$\frac{1}{T} \sum_{t=1}^{T} E\left[\|\nabla f(\bar{x}^{t-1})\|^2\right] \leq \frac{2}{\gamma T} (f(\bar{x}^0) - f^*) + 4\gamma^2 I^2 G^2 L + \frac{2}{N} \gamma \sigma^2$$

Proof. Fix $t \geq 1$. By the smoothness of f, we have

$$E[f(\bar{x}^t)] \leq E[f(\bar{x}^{t-1})] + E[(\nabla f(\bar{x}^{t-1}), \bar{x}^t - \bar{x}^{t-1})] + \frac{L}{2} E[||\bar{x}^t - \bar{x}^{t-1}||^2]$$

Note that

$$E[||\bar{x}^t - \bar{x}^{t-1}||^2] \overset{(a)}{=} \gamma^2 E[\|1/N \sum_{i=1}^{N} G_i^t\|^2]$$

Assume:

$$E_{\zeta_i \sim \mathcal{D}_i} \|\nabla F_i(x; \zeta_i) - \nabla f_i(x)\|^2 \leq \sigma^2$$

$$E_{\zeta_i \sim \mathcal{D}_i} \|\nabla F_i(x; \zeta_i)\|^2 \leq G^2$$
Part 2:
Escaping Saddle points in non-convex optimization
Yi Xu*, Rong Jin, Tianbao Yang*

* Xu and Yang are with Iowa State University
(First-order) Stationary Points (FSP) \(\| \nabla F(x) \|_2 = 0 \)

- Local minimum
- Local maximum
- Saddle point

\[\nabla^2 f(x) > 0 \quad \nabla^2 f(x) < 0 \quad \lambda_{\text{min}}(\nabla^2 f(x)) < 0 \]

Second-order Stationary Points (SSP)

\[\| \nabla f(x) \|_2 = 0, \lambda_{\text{min}}(\nabla^2 f(x)) \geq 0 \]

\(\nabla^2 f(x) \) has both +/- eigenvalues \(\iff \) saddle points, which can be bad!

\(\nabla^2 f(x) \) has both 0/+ eigenvalues \(\iff \) degenerate case: local minimum/saddle points

SSP is Local Minimum for non-degenerate saddle point
The Problem

• Finding an approximate local minimum by using first-order methods

\[\epsilon \text{-SSP: } \| \nabla f(x) \|_2 \leq \epsilon, \lambda_{\text{min}}(\nabla^2 f(x)) \geq -\gamma \]

• Choice of \(\gamma \): small enough, e.g., \(\gamma = \sqrt{\epsilon} \) (Nesterov & Polyak 2006)

Related Work

• Adding **Isotropic Noise**: Noisy SGD (Ge et al., 2015), SGLD (Zhang et al., 2017)

\[x_{t+1} = x_t - \eta (\nabla F(x_t; \xi_t) + n_t) \]

• \(n_t \) is an isotropic noise vector (e.g., Gaussian)
• Iteration complexity: \(\tilde{O}(d^p / \epsilon^4) \), where \(p \geq 4 \), \(d \) is dimension
• Noisy SGD is the **first work** on finding local minimum by first order methods
• For high-dimensional optimization problems, \(d \) is large

• Assume \(F(x; \xi) \) has Lipschitz continuous Gradient and Hessian
More Related Work

• Using **Full Gradient (FG)** and **Isotropic Noise**: Perturbed GD (Jin et al., 2017)
 • Add Perturbation Around a Saddle Point $\tilde{x}_t = x_t + n_t$
 • Take Gradient Descent from \tilde{x}_t
 • Iteration Complexity: $\tilde{O} \left(\frac{1}{\epsilon^4} \right)$, which hides the term $(\log d)^p$

• Using **Hessian-vector product (HVP)**: (Allen-Zhu, 2017)[Natasha2]
 • Iteration Complexity: $\tilde{O} \left(\frac{1}{\epsilon^{3.5}} \right)$
 • The cost of computing HVP per-iteration could be as high as $O(d^2)$

• Using both FG and HVP (Carmon et al., 2016; Agarwal et al., 2017)

Issue: FG and HVP could be more expensive than SG
Motivation: How to Escape from Saddles?

- Saddle points have zero gradient, i.e., $\nabla f(x) = 0$
- Non-degenerate Hessian, i.e. $\lambda_{\text{min}}(\nabla^2 f(x)) < 0$
- Negative eigenvector is a direction of escaping

$$f(x + \Delta) \approx f(x) + \Delta^T \nabla f(x) + \frac{L}{2} \Delta^T \nabla^2 f(x) \Delta < F(x)$$
Negative Curvature

Suppose \(\lambda_{\text{min}}(\nabla^2 f(x)) \leq -\gamma \), a direction \(v \in \mathbb{R}^d \) is called negative curvature (NC) direction if it satisfies \((c > 0 \text{ is a constant})\)

\[
v^T \nabla^2 f(x) v \leq -c\gamma \text{ and } ||v|| = 1
\]

• Find a NC direction \(v \), update solution by \(x_{t+1} = x_t - \eta v \)
• Escape Saddles: we show \(f(x_t) - f(x_{t+1}) \geq \Omega(\gamma^3) \)
How to Find NC?

• Second-order Methods: Power Method and Lanczos method

\[v_0 = n // \text{isotropic noise} \]
Iterate:
\[v_{t+1} = (I - \eta \nabla^2 F(x)) v_t \]

How to find NC \textbf{without} using HVP and Full Gradient?

Propose \textbf{NEON: NEgative curvature Oриginated from Noise}
NEON: A New Perspective of Noise Perturbation

• Adding Noise is for Extracting NC
 • \(x \): around a saddle point
 • Inspired by Perturbed Gradient Descent (PGD):
 • \(x_0 = x + e \), noise \(e \) is from sphere of a Euclidean ball
 • \(x_t = x_{t-1} - \eta \nabla F(x_{t-1}), t = 1, \ldots \)

• An Equivalent Sequence: let \(u_t = x_t - x \)
 • \(u_t = u_{t-1} - \eta \nabla F(u_{t-1} + x) \)
 \(\approx u_{t-1} - \eta [\nabla F(u_{t-1} + x) - \nabla F(x)] \)
 \(\approx u_{t-1} - \eta \nabla^2 F(x) u_{t-1} = [I - \eta \nabla^2 F(x)] u_{t-1} \)

• Around Saddle Point: PGD \(\approx \) Power Method

\[
\nabla F(x) \approx 0
\]

Lipschitz continuous Hessian when \(||u_{t-1}|| \) is small:
\[
\nabla F(u_{t-1} + x) - \nabla F(x) \approx \nabla^2 F(x) u_{t-1}
\]

NEON Update: Starting with a random noise \(u_0 \), the recurrence:
\[
u_{t+1} = u_t - \eta (\nabla F(x + u_t) - \nabla F(x)) \quad \text{iteration complexity} = \tilde{O} \left(\frac{1}{\gamma} \right)
\]
NEON+: Another Perspective

• Recall the update of NEON: \(u_{t+1} = u_t - \eta (\nabla F(x + u_t) - \nabla F(x)) \)

• NEON is essentially an application of GD to decrease \(F_x(u) \):

\[
F_x(u) = F(x + u) - F(x) - \nabla F(x)^T u
\]

Use Nesterov’s Accelerated Gradient to decrease \(F_x(u) \):

\[
y_{t+1} = u_t - \eta \nabla F_x(u_t), \quad u_{t+1} = y_{t+1} + \zeta (y_{t+1} - y_t)
\]

For \(\zeta = 1 - \sqrt{\eta \gamma} \), # iteration can be reduced to \(t = \tilde{O} \left(\frac{1}{\sqrt{\gamma}} \right) \)
Applications of NEON: Finding Local Minimum

Given a first-order alg. \mathcal{A} (it can find a FSP)

- SGD, Stochastic Heavy-ball, Stochastic Nesterov’s Accelerated Method
- Variance reduction methods, e.g., SCSG, SVRG

$\text{NEON} + \mathcal{A} \rightarrow \text{find a SSP point}$

- e.g., NEON-SCSG enjoy iteration complexity of $\tilde{O} \left(\frac{1}{\epsilon^{3.5}} \right)$ for finding $(\epsilon, \sqrt{\epsilon})$-SSP only using first-order information

Example: finding local minimum

$$f(x) = \sum_{i=1}^{d} \xi_i (x_i^4 - 4x_i^2)$$

ξ_i : a normal random variables with mean of 1
Part 3:
BPTune: Optimizing Buffer Pool Management for Large-Scale OLTP Database Clusters

A real system deployed for Alibaba database clusters

Algorithm: large deviation, deep neural networks, active learning

Large deviation on LRU: joint work with Quan, Ji and Shroff from The Ohio State University
“Personalization” for > 10,000 database instances

Measurements can NOT help much:
1. real BP usage \approx configured size
2. (miss ratio, response time) $\leftarrow ? \rightarrow$ BP size

Current practice:
1. Overprovision (e.g., double BP size)
2. Use only a few BP sizes

Challenges:
1. “Personalization” - find the “best” BP size for each instance; manual optimization is not scalable.
2. Prediction - estimate the response time for queries on each instance after changing its BP size?

BP = memory = fast access

Measurements on 10,000 database instances
an instance = a database working unit
Use only 11 different BP sizes by manual configurations
BPTune architecture

Reduce > 20% BP memory, compared with manual configurations
A bin-packing analysis shows BP is the bottleneck resource
Real experiment on an instance

Response Time: processing time of queries

Miss Ratio: fraction of queried Data not in memory

Change BP

Predicted RT

holidays
work days
Today focus on LRU Caching algorithm

- Least recently used (LRU) algorithm (widely used: Memcached, Redis)
 - Store the most recently used data in the cache.
 - Easy to implement, adaptive to time-varying popularities
- Q: What is the miss ratio of LRU?
Goal & challenges

• Goal: characterize BP size = F (miss ratio)
 • Accurately and explicitly compute LRU miss ratio
 • A unified analysis solving all challenges below

• Challenges
 • Different data sizes
 • Time correlations
 • Multiple query flows on a single BP
 • Overlapped data across different flows
 • Long tailed data access probabilities
e.g., Zipf’s distribution, Weibull distribution
Model

- K sets of data: DS_1, DS_2, \ldots, DS_K, $DS_k = \{d_i^{(k)}\}, 1 \leq i \leq N_k$
- K data flows sharing a LRU cache:
 Data flow k: a sequence of requests on the data set DS_k
- Time correlation
 - $\{\Pi_t\}_{t \in \mathbb{R}}$: a stationary and ergodic modulating process with finite states $\{1, 2, \ldots, M\}$ and the stationary distribution $(\pi_1, \pi_2, \ldots, \pi_M)$.
 - Request rates, data popularities vary in different states.
- Goal: $\mathbb{P}[\text{Miss}]$.

![Diagram illustrating model with sets of data and data flows]
New functional representation

• Define the (conditional) popularities

\[
p_i^{(k)} \triangleq \sum_{m=1}^{M} \pi_m \mathbb{P}[\text{request data } d_i^{(k)} | \text{in state } m] = \sum_{m=1}^{M} \pi_m p_i^{(k,m)},
\]

\[
q_i^{(k)} \triangleq \sum_{m=1}^{M} \pi_m \mathbb{P}[\text{request data } d_i^{(k)} | \text{the request is from flow } k, \text{in state } m]
= \pi_m q_i^{(k,m)}.
\]

\[p_i^{(k)} \text{ and } q_i^{(k)} \text{ can be very different.}\]

• Functional relationship \(\Psi_k(\cdot) \) & finite support impacting \(\Theta_k(\cdot) \):

For each flow \(k \), for \(\forall \lambda > 1 \), let the size of the data set \(N_k \sim \lambda y \). Find two eventually decreasing functions \(\Psi_k(\cdot) \) and \(\Theta_k(\cdot) \) that satisfy, as \(y \to \infty \),

\[
\sum_{i=y}^{N_k} q_i^{(k)} \sim \Psi_k \left((p_y^{(k)})^{-1} \right) + \Theta_k(N_k)
\]

where \(f(x) \sim g(x) \iff \lim_{x \to \infty} f(x)/g(x) = 1. \)
New functional representation

- Example: If $p_i^{(k)} = q_i^{(k)} = c_k / i^{\alpha_k}$, $1 \leq i \leq N$, $k = 1$, we have for flow 1:

$$\sum_{i=y}^{N} q_i^{(1)} \sim \int_{y}^{N} \frac{\pi_1 c_1}{x^{\alpha_1}} dx = \frac{\pi_1 c_1}{(\alpha_1 - 1)y^{\alpha_1 - 1}} - \frac{\pi_1 c_1}{(\alpha_1 - 1)N^{\alpha_1 - 1}}$$

$$\Psi_1(x) = \frac{(\pi_1 c_1)^{1/\alpha_1} \nu_{1,1}^{1/\alpha_1 - 1} x^{1/\alpha_1 - 1}}{\alpha_1 - 1}$$

$$\Theta_1(x) = -\frac{\pi_1 c_1}{\alpha_1 - 1} x^{-\alpha_1 + 1}$$
Main result

Theorem [Tan, Quan, Ji, Shroff]: Consider K flows without overlapped data that are modulated by the stationary and ergodic process $\{\Pi_t\}_{t \in \mathbb{R}}$. For flow k, if $\Psi_k(x) \sim x^\beta l(x)$, then under mild conditions, we have, as the cache size $x \to \infty$, for $\forall \lambda > 0$, $N_k = \lambda m^\leftarrow(x)$,

$$\mathbb{P}[\text{Miss} | \text{the request is from flow } k] \sim \beta \Gamma \left(\beta, m^\leftarrow(x) p^{(k)}_{N_k} \right) \Psi_k(\lambda m^\leftarrow(x)),$$

where $m^\leftarrow(x)$ is the inverse function of

$$m(x) = \sum_{k=1}^{K} \sum_{i=1}^{N_k} s_i^{(k)} \left(1 - \exp \left(- \sum_{m=1}^{M} \pi_{m} \nu_{k,m} q_i^{(k,m)} x \right) \right).$$

Note:

- $l(x)$ is any slowly varying function satisfying $\lim_{x \to \infty} l(\lambda x)/l(x) = 1$ for any $\lambda > 0$. (e.g., $\log(x)$, c, etc.)
- $\Gamma(\beta, s) = \int_{s}^{\infty} x^{\beta-1} e^{-x} dx$ is the incomplete gamma function.
- Quan, Ji and Shroff are with The Ohio State University
Main result

Corollary: Consider one flow of unit-sized data. Assume $q_i^{(1)} \sim c / i^\alpha$, $1 \leq i \leq N$. For $\forall \lambda > 0$, $N = \lambda m^-(x)$, we have, as the cache size $x \to \infty$,

$$\mathbb{P}[\text{Miss}] \sim \frac{c^{1/\alpha}}{\alpha} \Gamma \left(1 - \frac{1}{\alpha}, \frac{c m^-(x)}{N^\alpha} \right) m^-(x)^{-1+1/\alpha},$$

where, $m^-(x)$ is the inverse function of

$$m(x) = \Gamma \left(1 - \frac{1}{\alpha}, \frac{cx}{N^\alpha} \right) (cx)^{1/\alpha} + N \left(1 - \exp \left(-\frac{cx}{N^\alpha} \right) \right).$$

Our result (labeled as ‘theoretical 1’)

Previous result (labeled as ‘theoretical 2’)

![Graph comparing theoretical and empirical results for cache size and miss probability.](image-url)
Conclusion

➢ System for AI
 Part 1. Parallel restarted SGD (why model averaging works for Deep Learning?)
 Part 2. Escaping saddle points in non-convex optimization (first-order stochastic algorithms to find second-order stationary points)

➢ AI for system
 BPTune: intelligent database
 A real complex system deployment
 Combine OR/ML, e.g., pairwise DNN, active learning, heavy-tailed randomness ...
 Part 3. Stochastic (large deviation) analysis for LRU caching
Thank You! Questions?