Unsupervised Change Detection

Masashi Sugiyama
Tokyo Institute of Technology, Japan
sugi@cs.titech.ac.jp
Abstract

We consider the problem of detecting change in two sets of samples, and explore two approaches: distributional and structural change detection.

Distributional change detection is aimed at estimating a divergence between the probability densities behind the two sets of samples. We first explain that the two-step approach of first estimating the probability densities and then computing the divergence from the estimated densities results in systematic under-estimation of the divergence. Then we introduce methods to direct estimate the ratio of densities and the difference of densities, which are shown to be more reliable than the density estimation approach.
Abstract (cont.)

Structural change detection tries to identify change in element-wise dependency structure in multi-dimensional samples. We first consider the Gaussian sparse covariance selection setup and introduce approaches based on LASSO and fused-LASSO. Then we extend our discussion to non-Gaussian Markov networks, which generally suffer computational intractability of the normalization term, and introduce the importance sampling technique and the score matching method. Finally, we cover a method to directly compare two Markov networks for change detection.

No solid background on change detection is necessary, but basic knowledge of elementary statistics, linear algebra, and optimization is assumed.
Change Detection

Goal: Given two sets of samples, we want to compare the probability distributions behind

\[\{x_i\}_{i=1}^{n} \overset{\text{i.i.d.}}{\sim} p(x) \]

\[\{x'_{i'}\}_{i'=1}^{n'} \overset{\text{i.i.d.}}{\sim} p'(x) \]

Two approaches:

- Distributional change detection: Flexible and robust
- Structural change detection: Interpretable
Contents

1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 C) Distance approximation

2. Structural change detection
Distributional Change Detection

Goal: Detect change in probability distributions behind two sets of samples through divergence.

\[\{x_i\}_{i=1}^{n} \text{i.i.d. } p(x) \]

\[\{x'_{i'}\}_{i'=1}^{n'} \text{i.i.d. } p'(x) \]

Divergence \((p, p') \) < \(\epsilon\) ?
Motivating Example 1

Region-of-interest detection in images:

- $p(x)$ and $p'(x)$ are significantly different when a visually salient object is included inside.
Motivating Example 2

Event detection in movies:
- \(p(x) \) and \(p'(x) \) are significantly different when an irregular event occurs.
Motivating Example 3

Event detection from Twitter:

Change score for BP oil spill

[Graphs and data points showing changes in search volumes for keywords related to the BP oil spill.]
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 I. Density-ratio divergences
 II. Density-difference distances
 C) Distance approximation

2. Structural change detection
Distances and Divergences

- **Distance:**
 - Non-negativity: \(\forall x, y, \quad d(x, y) \geq 0 \)
 - Non-degeneracy: \(d(x, y) = 0 \iff x = y \)
 - Symmetry: \(\forall x, y, \quad d(x, y) = d(y, x) \)
 - Triangularity: \(\forall x, y, z \quad d(x, z) \leq d(x, y) + d(y, z) \)

- A divergence is a pseudo-distance.
- We consider distances/divergences between probability densities.
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 I. Density-ratio divergences
 II. Density-difference distances
 C) Distance approximation

2. Structural change detection
Kullback-Leibler Divergence

\[\text{KL}(p || p') = \int p(x) \log \frac{p(x)}{p'(x)} \, dx \]

😊 Compatible with maximum likelihood.

😊 Invariant under input transformation.
 (Jacobians cancel in the density ratio)

😢 Doesn’t satisfy symmetry and triangularity.

😢 Sensitive to outliers
 (due to log and ratio).
f-Divergences

Ali & Silvey (1966), Csiszár (1967)

\[F(p||p') = \int p'(x) f \left(\frac{p(x)}{p'(x)} \right) \, dx \]

\(f \) : Convex function such that \(f(1) = 0 \)

- \(f(t) = t \log t \) yields the KL-divergence:

\[KL(p||p') = \int p(x) \log \frac{p(x)}{p'(x)} \, dx \]

- To avoid the log function, let us use

\[f(t) = (t - 1)^2 \]
Pearson (PE) Divergence

Pearson (1900)

\[
\text{PE}(p \| p') = \int p'(x) \left(\frac{p(x)}{p'(x)} - 1 \right)^2 \, dx
\]

😊 Compatible with **least-squares**.

😊 **Invariant** under input transformation.

😢 Doesn’t satisfy symmetry and triangularity.

😢 **Sensitive to outliers** (no log, but still ratio).

\[
\frac{p(x)}{p'(x)}
\]
Relative Density Ratio

Yamada et al. (NIPS2011, NeCo2013)

- Density ratio \(\frac{p(x)}{p'(x)} \) can diverge to infinity.
- Relative density ratio is always bounded:

\[
\frac{p(x)}{\beta p(x) + (1 - \beta)p'(x)} < \frac{1}{\beta} \quad 0 \leq \beta < 1
\]

\(p(x) = N(x; 0, 1) \)
\(p'(x) = N(x; 0.5, 1) \)
Relative Pearson (rPE) Divergence

$$rPE(p\|p') = PE(p\|p_{\beta}) = \int p_{\beta}(x) \left(\frac{p(x)}{p_{\beta}(x)} - 1 \right)^2 \, dx$$

$$0 \leq \beta < 1 \quad p_{\beta}(x) = \beta p(x) + (1 - \beta)p'(x)$$

😊 Compatible with least-squares.
😊 Invariant under input transformation.
😊 Robust against outliers.
😢 Doesn’t satisfy symmetry and triangularity.
😢 Not clear how to choose β.
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 I. Density-ratio divergences
 II. Density-difference distances
 C) Distance approximation

2. Structural change detection
Density Difference

Density ratio based distance:
- Is the ratio 1?

\[
\frac{p(x)}{p'(x)}
\]

Density difference based distance:
- Is the difference 0?

\[
p(x) - p'(x)
\]
L^t-Distance

\[L^t(p, p') = \int |p(x) - p'(x)|^t \, dx \quad t \geq 0 \]

- Proper distance.
- Robust against outliers (no ratio).

- When \(t = 2 \):
 - Compatible with least-squares.
- Not invariant under input transformation.

- When \(t = 1 \):
 - Invariant under input transformation (because f-div).

\[f(t) = |t - 1| \]

\[L^1(p, p') = \int p'(x) \left| \frac{p(x)}{p'(x)} - 1 \right| \, dx \]
KL vs. L^2 for Outliers

$KL(p||p') = \int p(x) \log \frac{p(x)}{p'(x)} \, dx$

$L^2(p, p') = \int (p(x) - p'(x))^2 \, dx$

$p(x) = 0.9p'(x) + 0.1q(x - \mu)$

- L^2-distance is bounded.
- KL-divergence is unbounded.
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 C) Distance approximation
 I. Density-ratio divergences
 II. Density-difference distances
2. Structural change detection
Distance Approximation via Density Estimation

1. Estimate densities $p(x), p'(x)$ from samples:
 \[\{x_i\}_{i=1}^{n} \sim p(x) \]
 \[\{x'_{i'}\}_{i'=1}^{n'} \sim p'(x) \]

 - Maximum likelihood estimation
 - Bayes estimation
 - Kernel density estimation
 - Nearest-neighbor density estimation.

2. Plug-in the estimated densities $\hat{p}(x), \hat{p}'(x)$:
 \[\hat{KL}(p||p') = \int \hat{p}(x) \log \frac{\hat{p}(x)}{p'(x)} \, dx \]
 \[\hat{L}^2(p, p') = \int \left(\frac{\hat{p}(x) - \hat{p}'(x)}{p'(x)} \right)^2 \, dx \]
Drawback of Plug-In Density Estimation Approach

- Densities are estimated without regard to taking their ratio later.
- Division by \(\hat{p}' \) magnifies estimation error in \(\hat{p} \).

![Graph showing densities and their ratios](image-url)
Guiding Principle

Vapnik’s principle: Vapnik (Wiley 1998)

When solving a problem of interest, one should not solve a more general problem as an intermediate step

- Support vector machine avoids general density estimation and directly learns the boundary. Cortes & Vapnik (MLJ1995)

- Let’s avoid separately estimating $p(x)$ and $p'(x)$, and directly compare the densities!
Vapnik’s Principle in Distance Approximation

\[
\text{KL}(p \| p') = \int p(x) \log \frac{p(x)}{p'(x)} \, dx \\
L^2(p, p') = \int (p(x) - p'(x))^2 \, dx
\]

- Directly estimate the density ratio / difference:

\[
r(x) = \frac{p(x)}{p'(x)} \quad f(x) = p(x) - p'(x)
\]

without estimating each density \(p(x), p'(x) \).
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 C) Distance approximation
 I. Density-ratio divergences
 II. Density-difference distances

2. Structural change detection
KL-Divergence Approximation

Nguyen et al. (NIPS2007, IEEE-IT2010)
Sugiyama et al. (NIPS2007, AISM2008)

\[
\text{KL}(p||p') = \int p(x) \log r(x) dx
\]

\[
r(x) = \frac{p(x)}{p'(x)}
\]

- Directly approximate the **density ratio** with **log-loss**:

\[
\tilde{r} = \arg\min_{\tilde{r}} \text{KL}(p||\tilde{r} \cdot p')
\]

subject to \(\int \tilde{r}(x)p'(x)dx = 1 \) and \(\tilde{r} \geq 0 \)

\[
\text{KL}(p||p') \approx \int p(x) \log \tilde{r}(x) dx
\]

- Expectation is approximated by empirical average.
Solution for Linear Model

- **Linear-in-parameter model:**
 \[r_\alpha(x) = \sum_{j=1}^{b} \alpha_j \phi_j(x) = \alpha^\top \phi(x) \]

- **Empirical optimization problem:**
 \[\hat{\alpha} = \arg\max_{\alpha} \frac{1}{n} \sum_{i=1}^{n} \log r_\alpha(x_i) \]
 subject to \[\frac{1}{n'} \sum_{i'=1}^{n'} r_\alpha(x'_{i'}) = 1 \text{ and } \alpha \geq 0 \]

- The solution tends to be sparse due to \(\alpha \geq 0 \).
Solution for Linear Model

\[\hat{\alpha} = \arg \max_{\alpha} \frac{1}{n} \sum_{i=1}^{n} \log \alpha^\top \phi(x_i) \]

subject to \[\frac{1}{n'} \sum_{i'=1}^{n'} \alpha^\top \phi(x_{i'}) \] and \(\alpha \geq 0 \)

- Thanks to convexity, global optimal solution can be obtained by simple gradient-projection.

- Resulting KL-divergence approximator:

\[\text{KL}(p||p') \approx \frac{1}{n} \sum_{i=1}^{n} \log \hat{\alpha}^\top \phi(x_i) \]
Other Models

- **Kernel model:**
 - ☺ Nonparametric
 - \[r_\alpha(x) = \sum_{j=1}^{n} \alpha_j K(x, x_j) \]

- **Log-linear model:**
 - ☺ Always positive
 - ☺ Compatible with Markov networks
 - \[r_\alpha(x) = \exp \left(\sum_{j=1}^{b} \alpha_j \phi_j(x) \right) \]

- **Gaussian mixture model:**
 - ☺ More flexible
 - ☹ Non-convex optimization
 - \[r_\alpha(x) = \sum_{j=1}^{b} \alpha_j N(x; \mu_j, \Sigma_j) \]

- **Probabilistic PCA mixture:**
 - ☺ Local dimension reduction
 - ☹ Non-convex optimization
Numerical Example

- Gaussian kernel model:

\[r_\alpha(x) = \sum_{j=1}^{n} \alpha_j \exp\left(-\frac{\|x - x_j\|^2}{2\sigma^2}\right) \]

\[p'(x) \]

\[p(x) \]

\[r(x) = \frac{p(x)}{p'(x)} \]

\[\hat{r}(x) \]
Model Selection

Choice of the Gaussian bandwidth affects the performance.

Cross-validation (CV):

- Split \(\{x_i\}_{i=1}^n \) into estimation and validation subsets.

- Repeat this estimation-validation process for all combinations

CV gives an almost unbiased estimator of KL.
Numerical Example

Model selection by CV works.

CV score

True KL (without constant)
Comparison with KDE

- **d-dimensional Gaussians with covariance identity and**
 - **Denominator:** mean \((0,0,0,…,0)\)
 - **Numerator:** mean \((1,0,0,…,0)\)

- **Kernel density estimation (KDE):**
 - Estimate two densities separately and take ratio.
 - Gaussian widths are chosen by CV.

- **Ratio:**
 - Estimate the density ratio directly.
 - Gaussian width is chosen by CV.
Density ratio approach works better.
PE-Divergence Approximation

Kanamori et al. (NIPS2008, JMLR2009)

\[
PE(p||p') = \int p'(x) \left(r(x) - 1 \right)^2 dx = \int p(x) r(x) dx - 1
\]

- Directly approximate the density ratio by least-squares:

\[
\hat{r} = \arg \min_{\tilde{r}} \int p'(x) \left(\tilde{r}(x) - r(x) \right)^2 dx
\]

\[
= \arg \min_{\tilde{r}} \int p'(x) \left(\tilde{r}(x) \right)^2 dx - 2 \int p(x)r(x) dx
\]

\[
PE(p||p') \approx \int p(x)\hat{r}(x) dx - 1
\]

- Expectation is approximated by empirical average.
PE-Divergence Approximation for Linear Model

\[\hat{\alpha} = \arg\min_{\alpha} \left[\frac{1}{n'} \sum_{i'=1}^{n'} r_{\alpha}(x_{i}')^2 - \frac{2}{n} \sum_{i=1}^{n} r_{\alpha}(x_i) \right] \]

\[r_{\alpha}(x) = \alpha^\top \phi(x) \]

Solution is given analytically:

\[\hat{\alpha} = \arg\min_{\alpha} \left[\alpha^\top \hat{G} \alpha - 2 \hat{h}^\top \alpha + \lambda \alpha^\top \alpha \right] \]

\[= (\hat{G} + \lambda I)^{-1} \hat{h} \]

Resulting PE-divergence approximator:

\[\text{PE}(p||p') \approx \frac{1}{n} \sum_{i=1}^{n} \hat{\alpha}^\top \phi(x_i) - 1 = \hat{h}^\top (\hat{G} + \lambda I)^{-1} \hat{h} - 1 \]
MATLAB Implementation for Gauss Kernel Model

\[r_\alpha(x) = \sum_{j=1}^{n} \alpha_j \exp \left(-\frac{\|x - x_j\|^2}{2\sigma^2} \right) \]

\[\text{PE}(p||p') \approx \hat{h}^\top (\hat{G} + \lambda I)^{-1} \hat{h} - 1 \]

\[\hat{h}_j = \frac{1}{n} \sum_{i=1}^{n} \exp \left(-\frac{\|x_i - x_j\|^2}{2\sigma^2} \right) \]

\[\hat{G}_{j,j'} = \frac{1}{n'} \sum_{i'=1}^{n'} \exp \left(-\frac{\|x_{i'} - x_j\|^2}{2\sigma^2} \right) \exp \left(-\frac{\|x_{i'} - x_{j'}\|^2}{2\sigma^2} \right) \]

\[
\begin{align*}
n & = 1000; \quad \text{x=randn(n,1); y=randn(n,1)+1/2;} \\
x2 & = \text{x.^2; xx=repmat(x2,1,n)+repmat(x2',n,1)-2*x*x'; s=exp(-xx);} \\
y2 & = \text{y.^2; yx=repmat(y2,1,n)+repmat(x2',n,1)-2*y*x'; t=exp(-yx);} \\
\text{PE} & = \text{mean(s*(((t*t/n+eye(n))*y(mean(s,2))))-1;}
\end{align*}
\]

- Relative density ratio can also be estimated in the almost same way.
f-Divergences and Duality

\[F(p || p') = \int p'(\mathbf{x}) f \left(\frac{p(\mathbf{x})}{p'(\mathbf{x})} \right) \, d\mathbf{x} \]

\(f \): Convex function such that \(f(1) = 0 \)

- **Fenchel transform (convex conjugate):**
 \[f^*(r) = - \inf_t \left[f(t) - rt \right] \]

- **Conjugate of conjugate:**
 \[f(t) = - \inf_r \left[f^*(r) - rt \right] \]

- **KL-divergence:**
 \(f(t) = t \log t \)

 \[f^*(r) = \exp(r - 1) \]

- **PE-divergence:**
 \(f(t) = (t - 1)^2 \)

 \[f^*(r) = \frac{r^2}{2} + r \]
Lower Bound of f-Divergences

Nguyen et al. (NIPS2007, IEEE-IT2010)

\[
F(p||p') = \int p'(\mathbf{x}) f \left(\frac{p(\mathbf{x})}{p'(\mathbf{x})} \right) d\mathbf{x}
\]

\[
f(t) = - \inf_r [f^*(r) - rt]
\]

Lower bound of f-divergences:

\[
\hat{F}(p||p') = - \inf_r \left[\int p'(\mathbf{x}) f^*(r(\mathbf{x})) d\mathbf{x} - \int p(\mathbf{x}) r(\mathbf{x}) d\mathbf{x} \right]
\]

Sample approximation gives

\[
\hat{F}(p||p') = - \min_{\alpha} \left[\frac{1}{n'} \sum_{i'=1}^{n'} f^*(r_\alpha(\mathbf{x}_{i'})) - \frac{1}{n} \sum_{i=1}^{n} r_\alpha(\mathbf{x}_i) \right]
\]
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distances
 C) Distance approximation
 I. Density-ratio divergences
 II. Density-difference distances

2. Structural change detection
L^2\text{-Distance Approximation}

Kim & Scott (IEEE-TPAMI2010)
Sugiyama et al. (NIPS2012, NeCo2013)

\[L^2(p, p') = \int f(x)^2 dx \]

\[f(x) = p(x) - p'(x) \]

- Directly approximate the density difference by LS:

\[
\hat{f} = \arg\min_{\tilde{f}} \int (\tilde{f}(x) - f(x))^2 dx
\]

\[= \arg\min_{\tilde{f}} \int (\tilde{f}(x))^2 dx - 2 \int f(x) \tilde{f}(x) dx \]

\[L^2(p, p') \approx \int \hat{f}(x)^2 dx \]

- Expectation is approximated by empirical average.
Solution for Linear Model

\[
\hat{\alpha} = \arg\min_{\alpha} \int \left(f_\alpha(x) \right)^2 \, dx + \frac{1}{n'} \sum_{i' = 1}^{n'} f_\alpha(x_{i'})^2 - \frac{1}{n} \sum_{i = 1}^{n} f_\alpha(x_i)
\]

\[
f_\alpha(x) = \sum_{j=1}^{b} \alpha_j \phi_j(x) = \alpha^\top \phi(x)
\]

\(\text{(Regularized) solution is given analytically:}\)

\[
\hat{\alpha} = \arg\min_{\alpha} \left[\alpha^\top G \alpha - 2 \hat{h}^\top \alpha + \lambda \alpha^\top \alpha \right]
\]

\[
= (G + \lambda I)^{-1} \hat{h}
\]

\[
G = \int \phi(x) \phi(x)^\top \, dx
\]

\[
\hat{h} = \frac{1}{n} \sum_{i = 1}^{n} \phi(x_i) - \frac{1}{n'} \sum_{i' = 1}^{n'} \phi(x_{i'})
\]
Resulting L^2-Distance Approximator

Two ways to approximate the L^2-distance by density-difference estimation:

1. $L^2(p, p') = \int f(x)^2 \, dx \approx \hat{\alpha}^\top G \hat{\alpha}$
 \[\hat{\alpha} = (G + \lambda I)^{-1} \hat{h} \]
 \[f(x) = p(x) - p'(x) \approx \hat{\alpha}^\top \phi(x) \]

2. $L^2(p, p') = \int \left(p(x) - p'(x) \right) f(x) \, dx \approx \hat{h}^\top \alpha$
 \[G = \int \phi(x) \phi(x)^\top \, dx \]
 \[\hat{h} = \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) - \frac{1}{n'} \sum_{i'=1}^{n'} \phi(x_{i'}) \]
Bias Reduction

Consider their linear combination:

\[\kappa \hat{h}^\top \hat{\alpha} + (1 - \kappa) \hat{\alpha}^\top G\hat{\alpha} \]

For small \(\lambda \),

\[\kappa \hat{h}^\top \hat{\alpha} + (1 - \kappa) \hat{\alpha}^\top G\hat{\alpha} \]

\[= \hat{h}^\top G^{-1} \hat{h} - \lambda (2 - \kappa) \hat{h}^\top G^{-2} \hat{h} + o_p(\lambda) \]

\(\kappa = 2 \) removes the regularization-induced bias:

\[\hat{L}^2(\chi, \chi') = 2\hat{h}^\top \hat{\alpha} - \hat{\alpha}^\top G\hat{\alpha} \]
Density-Difference Estimation (1)

\[p(x) = p'(x) = N(x; 0, (4\pi)^{-1}) \]

\[n = n' = 200 \]

- Difference of kernel Density estimators (KDE)
- Least-squares density difference estimation (LSDD)
Density-Difference Estimation (2)

\[p(x) = N(x; 0, (4\pi)^{-1}) \]

\[p'(x) = N(x; 0.5, (4\pi)^{-1}) \]

\[n = n' = 200 \]
L2-Distance Approximation

\[p(x) = N(x; (\mu, 0, \ldots, 0)^\top, (4\pi)^{-1} I_d) \]
\[p'(x) = N(x; (0, 0, \ldots, 0)^\top, (4\pi)^{-1} I_d) \]

- KDE significantly under-estimates.
- LSDD slightly over-estimates.

\[n = n' = 100 \]

- $d = 1$
- $d = 5$

KDE significantly under-estimates.
LSDD slightly over-estimates.
$L^2(p, p') = \int \left(p(x) - p'(x) \right)^2 dx$

$KL(p \| p') = \int p(x) \log \frac{p(x)}{p'(x)} dx$

L^2-distance is less sensitive to outliers.
Robust Two-Sample Test

- **Two-sample test**: Are two distributions the same?
 - **Null**: Two are the same
 - **Alternative**: Two are different

L²-based test is more robust against outliers.
Unsupervised Change Detection

- Identify change points in time-series:

- Use the distance between the distributions of sliding-windowed past and current data.
Results

CENSREC Speech Data

HASC Accelerometer Data

L^2 is more robust against noise.
Mutual Information

\[\text{MI} = \int \int p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \, dx \, dy \]

- **Mutual information** is the KL-divergence from the joint density \(p(x, y) \) to the product of marginal densities \(p(x)p(y) \).
- **Independence** can be measured:
 - \(\text{MI} \geq 0 \)
 - \(\text{MI} = 0 \) \(\iff \) \(x \) and \(y \) are independent
Mutual Information Approximation

\[\text{MI} = \int \int p(x, y) \log \frac{p(x, y)}{p(x)p(y)} \, dx \, dy \]

- Estimation of density ratio \(r(x, y) = \frac{p(x, y)}{p(x)p(y)} \)

from \(\{(x_i, y_i)\}_{i=1}^{n} \overset{\text{i.i.d.}}{\sim} p(x, y) \) and \(\{(x_i, y_i')\}_{i,i'=1}^{n} \overset{\text{i.i.d.}}{\sim} p(x)p(y) \) gives an MI approximator:

\[\hat{\text{MI}} = \frac{1}{n} \sum_{i=1}^{n} \log \hat{r}(x_i, y_i) \]
Variations of MI

- Squared-loss MI (Pearson divergence):

\[
\text{SMI} = \int \int p(x)p(y) \left(\frac{p(x, y)}{p(x)p(y)} - 1 \right)^2 \, dx \, dy
\]

- Relative SMI:

\[
r\text{SMI} = \int \int p_\beta(x, y) \left(\frac{p(x, y)}{p_\beta(x, y)} - 1 \right)^2 \, dx \, dy
\]

\[0 \leq \beta < 1 \quad p_\beta(x, y) = \beta p(x, y) + (1 - \beta)p(x)p(y)\]

- Quadratic MI:

\[
\text{QMI} = \int \int \left(p(x, y) - p(x)p(y) \right)^2 \, dx \, dy
\]
Usages of MI Approximator

- **MI between input and output:**
 - Feature selection/extraction
 - Clustering

- **MI between inputs:**
 - Independent component analysis
 - Higher-order canonical correlation analysis
 - Object matching

- **MI between input and residual:**
 - Causal direction inference
Summary of Distributional Change Detection

- Compute a divergence between distributions:
 - Separate density estimation does not work well, because Vapnik’s principle is violated.
 - Direct estimation of density ratio/difference seems more sensible.

- Don’t simply use KL as a divergence measure just because it is popular.
 - Relative PE and L^2 could be more robust against outliers and computationally more efficient.

- MI can also be approximated in the same way.
A Little Break: Artist Agent

Ning et al. (ICML2012)

Brush movement learning by reinforcement learning.
1. Distributional change detection
2. Structural change detection
 A) Density estimation approach
 B) Density-ratio estimation approach
From Distributional Change to Structural Change

Through distance estimation, distributional change can be detected.

We investigate how distributions are changed through interaction between variables.
Motivating Examples

- Word co-occurrence in Twitter
- Gene regulatory networks
- Fraud detection in smart grid
1. Distributional change detection
2. Structural change detection
 A) Density estimation approach
 I. Gauss models
 II. Non-Gauss models
 B) Density-ratio estimation approach
Gauss Model

\[q(\mathbf{x}; \Theta) = \frac{\det(\Theta)^{1/2}}{(2\pi)^{d/2}} \exp \left(-\frac{1}{2} \mathbf{x}^\top \Theta \mathbf{x} \right) \]

\(\Theta \): (sparse) inverse covariance matrix

- **Conditional independence:**
 \[\Theta_{k,k'} = 0 \iff x^{(k)} \perp \perp x^{(k')} \mid \{x^{(\ell)}\}_{\ell \neq k,k'} \]

- **Graphical representation:**
 - **Node:** Each variable
 - **Edge:** Exists if \(\Theta_{i,j} \neq 0 \)
 - Only connected variables affect!
Structural Change Detection with Gauss Models

- Use Gauss models for $p(x)$ and $p'(x)$:

 $$q(x; \Theta) = \frac{\det(\Theta)^{1/2}}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}x^\top \Theta x\right)$$

- Detect sparse change in covariance structure:

 $q(x; \Theta) = q(x; \Theta')$
Structural Change Detection
by Graphical Lasso (Glasso)

Tibshirani (JRSS1996), Friedman et al. (Biostat2008)

\[
\{ x_i \}_{i=1}^{n} \overset{\text{i.i.d.}}{\sim} p(x)
\]

\[
\{ x_i' \}_{i'=1}^{n'} \overset{\text{i.i.d.}}{\sim} p'(x)
\]

Sparse maximum likelihood estimation:

\[
\max_{\Theta} \sum_{i=1}^{n} \log q(x_i; \Theta) - \lambda \| \Theta \|_1
\]

\[
\max_{\Theta'} \sum_{i'=1}^{n'} \log q(x_i'; \Theta') - \lambda' \| \Theta' \|_1
\]

\[
q(x; \Theta) = \frac{\det(\Theta)^{1/2}}{(2\pi)^{d/2}} \exp \left(-\frac{1}{2} x^\top \Theta x \right) \quad \lambda, \lambda' \geq 0
\]
Structural Change Detection
by Glasso

\[
\max_{\Theta} \sum_{i=1}^{n} \log q(x_i; \Theta) - \lambda \| \Theta \|_1 \\
\max_{\Theta'} \sum_{i'=1}^{n'} \log q(x_{i'}; \Theta') - \lambda' \| \Theta' \|_1
\]

😊 Scalable to high-dimensional datasets.

😊 Statistical properties have been well studied.

رياضات لا تعمل إذا كان \(\Theta \) و \(\Theta' \) كثافيتين.

رياضات لا تعمل إذا كان \(\Theta \) و \(\Theta' \) كثافيتين.

رياضات لا تعمل إذا كان \(\Theta \) و \(\Theta' \) كثافيتين.

Choice of \(\lambda \) and \(\lambda' \) is not straightforward.

Both \(\Theta \) and \(\Theta' \) are sparse

Change \(\Theta - \Theta' \) is sparse
Structural Change Detection by Fused Lasso (Flasso)

Tibshirani et al. (JRSS2005)
Zhang & Wang (UAI2010)

- Directly penalize the difference of parameters to be sparse:

\[
\max_{\Theta, \Theta'} \sum_{i=1}^{n} \log q(x_i; \Theta) + \sum_{i'=1}^{n'} \log q(x'_{i'}; \Theta') - \gamma \| \Theta - \Theta' \|_1
\]

- Scalable to high-dimensional datasets.
- Work well even if true \(\Theta \) and \(\Theta' \) are dense.
1. Distributional change detection

2. Structural change detection
 A) Density estimation approach
 I. Gauss models
 II. Non-Gauss models
 B) Density-ratio estimation approach
Correlation and Dependence

Gauss models cannot capture higher-order correlations.

No correlation does not imply independence.

Θ: (sparse) inverse covariance matrix

$$q(x; \Theta) = \frac{\det(\Theta)^{1/2}}{(2\pi)^{d/2}} \exp \left(-\frac{1}{2} x^\top \Theta x \right)$$

No correlation but dependent

Independence

No correlation
Nonparanormal Models

Liu et al. (JMLR2009)

- Gaussian after element-wise transformation:

\[
q(\mathbf{x}; \Theta) = \frac{\det(\Theta)^{1/2}}{(2\pi)^{d/2}} \exp \left(-\frac{1}{2} \mathbf{f}(\mathbf{x})^\top \Theta \mathbf{f}(\mathbf{x}) \right) \prod_{k=1}^{d} |f_k'(x^{(k)})|
\]

\[
\mathbf{f}(\mathbf{x}) = (f_1(x^{(1)}), \ldots, f_d(x^{(d)}))^\top
\]

\[
\mathbf{x} = (x^{(1)}, \ldots, x^{(d)})^\top
\]

- More flexible than ordinary Gauss models.

- Still restrictive in representation.
Pairwise Markov Networks

\[
q(x; \theta) = \frac{\overline{q}(x; \theta)}{Z(\theta)}
\]

\[
\overline{q}(x; \theta) = \exp \left(\sum_{k \geq k'} \theta_k^T f(x^{(k)}, x^{(k')}) \right)
\]

\[
f(x, x') : \text{feature vector}
\]

- **Gaussian:** \[f(x, x') = xx'\]
- **Nonparanormal:** \[f(x, x') = f(x)f(x')\]
- **Polynomial:** \[f(x, x') = [x^t, x^{t-1}x', \ldots, x, x', 1]^{\top}\]

😊 High representation capability.

 данным Normalization \[Z(\theta) = \int \overline{q}(x; \theta)dx\] is intractable.
Importance Sampling

1. Draw pseudo-samples from a proposal density:
\[\{x_{i''}''\}_{i''=1}^{n''} \text{i.i.d.} \sim p''(x) \] (e.g., Gaussian)

2. Approximate the integration by importance-weighted sample average:
\[
Z(\theta) = \int \overline{q}(x; \theta) \, dx = \int \frac{\overline{q}(x; \theta)}{p''(x)} p''(x) \, dx \\
\approx \frac{1}{n''} \sum_{i''=1}^{n''} \frac{\overline{q}(x_{i''}''; \theta)}{p(x_{i''}''; \theta)} \quad \text{as } n'' \to \infty \quad \int \overline{q}(x; \theta) \, dx
\]

😊 Law of large numbers guarantees consistency.
😊 Unstable due to large variance.
Score Matching

Hyvärinen (JMLR2005)

Learn unnormalized density model $\bar{q}(\mathbf{x}; \theta)$ by least-squares matching of score functions:

$$\min_\theta \int p(\mathbf{x}) \| \psi(\mathbf{x}; \theta) - \nabla_{\mathbf{x}} \log p(\mathbf{x}) \|^2 d\mathbf{x}$$

$$\psi(\mathbf{x}; \theta) = \nabla_{\mathbf{x}} \log \bar{q}(\mathbf{x}; \theta) \quad \nabla_{\mathbf{x}} = (\partial_{x(1)}, \ldots, \partial_{x(d)})^T$$

Empirical version (use integration-by-parts):

$$\min_\theta \sum_{i=1}^n S(\mathbf{x}_i; \theta) \quad S(\mathbf{x}; \theta) = \sum_{k=1}^d \left(\psi_k(\mathbf{x}; \theta)^2 + 2 \partial_{x(k)} \psi_k(\mathbf{x}; \theta) \right)$$

$$\int \psi_k(\mathbf{x}; \theta) \partial_{x(k)} p(\mathbf{x}) d\mathbf{x} = - \int \partial_{x(k)} \psi_k(\mathbf{x}; \theta) p(\mathbf{x}) d\mathbf{x}$$

😊 No normalization is needed.
1. Distributional change detection
2. Structural change detection
 A) Density estimation approach
 B) Density-ratio estimation approach
Avoiding Density Estimation

Fused lasso + Score matching:

\[\max_{\Theta, \Theta'} \sum_{i=1}^{n} S(x_i; \theta) + \sum_{i'=1}^{n'} S(x_{i'}'; \theta') - \gamma \| \theta - \theta' \|_1 \]

- Work well even if true \(\Theta \) and \(\Theta' \) are dense.
- Higher-order correlations can be captured.
- Still need explicit modeling of \(p(x) \) and \(p'(x) \).

Vapnik’s principle:

Don’t solve a more general problem
Direct Change Modeling in Markov Networks

Liu et al. (ECML2013, NeCo2014)

Without separately modeling \(p(x) \) and \(p'(x) \), we directly model the density ratio \(p(x)/p'(x) \):

\[
r(x) = \frac{p(x)}{p'(x)} \approx \frac{q(x; \theta)}{q(x; \theta')} \propto \exp \left(\sum_{k \geq k'} (\theta_{k,k'} - \theta'_{k,k'})^\top f(x^{(k)}, x^{(k')}) \right)
\]

\[
q(x; \theta) = \frac{1}{Z(\theta)} \exp \left(\sum_{k \geq k'} \theta_{k,k'}^\top f(x^{(k)}, x^{(k')}) \right)
\]

Individual parameters \(\theta, \theta' \) are not necessary, but their difference \(\alpha = \theta - \theta' \) is enough.
Ratio of Markov Network Models

\[r_\alpha(x) = \frac{1}{N(\alpha)} \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T f(x^{(k)}, x^{(k')}) \right) \]

Normalization:

\[r(x) = \frac{p(x)}{p'(x)} \implies \int p'(x) r(x) dx = \int p(x) dx = 1 \]

Simple sample averaging is consistent:

\[N(\alpha) = \int p'(x) \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T f(x^{(k)}, x^{(k')}) \right) dx \approx \frac{1}{n'} \sum_{i'=1}^{n'} \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T f(x'_{i'}^{(k)}, x'_{i'}^{(k')}) \right) \]
Sparse Density-Ratio Estimation

Sugiyama et al. (NIPS2007, AISM2008)

Density-ratio matching under KL-divergence:

\[
\min_{\alpha} \int p(x) \log \frac{p(x)}{p'(x) r_\alpha(x)} \, dx
\]

\[r_\alpha(x) \approx \frac{p(x)}{p'(x)}\]

Sample approximation gives

\[
\min_{\alpha} \log \frac{1}{n'} \sum_{i'=1}^{n'} \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T f(x_{i'}^{(k)}, x_{i'}^{(k')}) \right) - \frac{1}{n} \sum_{i=1}^{n} \sum_{k \geq k'} \alpha_{k,k'}^T f(x_i^{(k)}, x_i^{(k')})
\]

- Tractable for any feature \(f(x^{(k)}, x^{(k')})\).
- Add a smoothing regularizer: \(+\eta \|\alpha\|^2\)
- Add a **group-sparsity** regularizer: \(+\gamma \sum_{k \geq k'} \|\alpha_{k,k'}\|\)
Simple gradient-projection gives the global solution.

Efficient when more samples than parameters.

\[
\min_{\alpha} \log \frac{1}{n'} \sum_{i'=1}^{n'} \exp \left(\sum_{k \geq k'} \alpha_{k,k'}^T f(x^{(k)}_{i'}, x^{(k')}_{i'}) \right)
\]

\[-\frac{1}{n} \sum_{i=1}^{n} \sum_{k \geq k'} \alpha_{k,k'}^T f(x^{(k)}_{i}, x^{(k')}_{i}) + \eta \| \alpha \|^2 \]

subject to \(\sum_{k \geq k'} \| \alpha_{k,k'} \| \leq C_\gamma \)
Dual Optimization

\[
\min_{\beta} \sum_{i'=1}^{n'} \beta_i' \log \beta_i' + \frac{1}{2\eta} \sum_{k \geq k'} \max(0, \|m_{k,k'}\| - \gamma)^2
\]

subject to \(\beta_1, \ldots, \beta_{n'} \geq 0, \sum_{i'=1}^{n'} \beta_i' = 1\)

\[
m_{k,k'} = \frac{1}{n} \sum_{i=1}^{n} f(x_i^{(k)}, x_i^{(k')}) - \frac{1}{n'} \sum_{i'=1}^{n'} \beta_i' f(x_i'^{(k)}, x_i'^{(k')})
\]

\[
\alpha_{k,k'} = \max(0, \|m_{k,k'}\| - \gamma) \frac{m_{k,k'}}{\eta \|m_{k,k'}\|}
\]

- Simple gradient-projection gives the global solution.
- Efficient when more parameters than samples.
Gaussian Data
(d=40, n=n’=100, Change in 15 Edges)

- All use the Gaussian model.
- KLIEP and Flasso work well.
Gaussian Data
(d=40, n=n’=50, Change in 15 Edges)

KLIEP works well even with small samples.

\[\alpha = \theta - \theta' \]
Non-Gaussian Data
(d=9, n=n’=5000, Change in 7 Edges)

- KLIEP (Poly) works well.
 - Poly: \(f(x, x') = [x^t, x^{t-1}x', \ldots, x, x', 1]^{\top} \)
 - NPN: \(f(x) = \text{sign}(x)x^2 \)

No correlation, no nonparanormal

KLIEP (Poly)
Take-Home Messages

- Directly learn the change:
 - Flexible and robust distributional change detection by direct density-ratio/density-difference estimation
 - Interpretable and tractable structural change detection by group-sparse density-ratio estimation

Don’t solve a more general problem

\[\{ x_i \}_{i=1}^{n} \overset{\text{i.i.d.}}{\sim} p(x) \]

\[\{ x'_i \}_{i'=1}^{n'} \overset{\text{i.i.d.}}{\sim} p'(x) \]

- Sugiyama et al., Density Ratio Estimation in Machine Learning, Cambridge University Press, 2012
PE-Divergence Approximation

Kanamori et al. (NIPS2008, JMLR2009)

\[
\text{PE}(p||p') = \int p'(x) \left(r(x) - 1 \right)^2 \, dx = \int p(x) r(x) \, dx - 1
\]

- Directly approximate the density ratio by least-squares:

\[
\hat{r} = \arg\min_{\tilde{r}} \int p'(x) \left(\tilde{r}(x) - r(x) \right)^2 \, dx
\]

\[
= \arg\min_{\tilde{r}} \int p'(x) \left(\tilde{r}(x) \right)^2 \, dx - 2 \int p(x) r(x) \, dx
\]

\[
\text{PE}(p||p') \approx \int p(x) \hat{r}(x) \, dx - 1
\]

- Expectation is approximated by empirical average.

\[
r(x) = \frac{p(x)}{p'(x)}
\]
1. Distributional change detection
 A) Problem setup and motivating examples
 B) Distance approximation
 I. Kullback-Leibler divergence
 II. Pearson divergence
 III. Relative Pearson divergence
 IV. L^2-distance

2. Structural change detection
rPE-Divergence Approximation

Yamada et al. (NIPS2011, NeCo2013)

\[rPE(p||p') = \int p_\beta(\mathbf{x}) \left(\frac{p(\mathbf{x})}{p_\beta(\mathbf{x})} - 1 \right)^2 d\mathbf{x} = \int p(\mathbf{x}) \frac{p(\mathbf{x})}{p_\beta(\mathbf{x})} d\mathbf{x} - 1 \]

\[p_\beta(\mathbf{x}) = \beta p(\mathbf{x}) + (1 - \beta)p'(\mathbf{x}) \quad 0 \leq \beta < 1 \]

- Directly approximate the relative density ratio by LS:

\[\hat{r}_\beta = \arg\min_{\tilde{r}} \int p_\beta(\mathbf{x}) \left(\tilde{r}(\mathbf{x}) - \frac{p(\mathbf{x})}{p_\beta(\mathbf{x})} \right)^2 d\mathbf{x} \]

\[= \arg\min_{\tilde{r}} \int p_\beta(\mathbf{x}) (\tilde{r}(\mathbf{x}))^2 d\mathbf{x} - 2 \int p(\mathbf{x})\tilde{r}(\mathbf{x})d\mathbf{x} \]

\[rPE(p||p') \approx \int p(\mathbf{x})\hat{r}_\beta(\mathbf{x})d\mathbf{x} - 1 \]

- Expectation is approximated by empirical average.
Solution for Linear Model

(Regularized) solution is given analytically:

\[
\hat{\alpha}_\beta = \arg\min_{\alpha} \beta \frac{1}{n'} \sum_{i'=1}^{n'} r_\alpha(x'_{i'})^2 + \frac{1 - \beta}{n} \sum_{i=1}^{n} r_\alpha(x_i)^2 - 2 \frac{1}{n} \sum_{i=1}^{n} r_\alpha(x_i)
\]

\[r_\alpha(x) = \alpha^\top \phi(x)\]

\[
\hat{\alpha}_\beta = \arg\min_{\alpha} \left[\alpha^\top \hat{G}_\beta \alpha - 2 \hat{h}^\top \alpha + \lambda \alpha^\top \alpha \right]
\]

\[= (\hat{G}_\beta + \lambda I)^{-1} \hat{h}\]

\[
\hat{G}_\beta = \frac{\beta}{n'} \sum_{i'=1}^{n'} \phi(x'_{i'}) \phi(x'_{i'})^\top + \frac{1 - \beta}{n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^\top
\]

Resulting rPE-divergence approximator:

\[
rPE(p||p') \approx \frac{1}{n} \sum_{i=1}^{n} \hat{\alpha}_\beta \phi(x_i) - 1 = \hat{h}^\top (\hat{G}_\beta + \lambda I)^{-1} \hat{h} - 1
\]