Graphical Models and Kernel Methods

Jerry Zhu

Department of Computer Sciences
University of Wisconsin–Madison, USA

MLSS
June 17, 2014
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
- Inference
- Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
Outline

Graphical Models
Probabilistic Inference
Directed vs. Undirected Graphical Models
Inference
Parameter Estimation

Kernel Methods
Support Vector Machines
Kernel PCA
Reproducing Kernel Hilbert Spaces
Graphical Models
 Probabilistic Inference
 Directed vs. Undirected Graphical Models
 Inference
 Parameter Estimation

Kernel Methods
 Support Vector Machines
 Kernel PCA
 Reproducing Kernel Hilbert Spaces
The envelope quiz

▶ red ball = $$$
The envelope quiz

- red ball = $$$
- You randomly picked an envelope, randomly took out a ball – and it was black
The envelope quiz

- red ball = $$$
- You randomly picked an envelope, randomly took out a ball – and it was black
- Should you choose this envelope or the other envelope?
The envelope quiz

- Probabilistic inference
The envelope quiz

- Probabilistic inference
 - Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$:
 \[P(E, B) = P(E)P(B \mid E) \]
Transform the envelope quiz

- **Probabilistic inference**
 - **Joint distribution** on $E \in \{1, 0\}, B \in \{r, b\}$:
 $$P(E, B) = P(E)P(B \mid E)$$
 - $P(E = 1) = P(E = 0) = 1/2$
The envelope quiz

- Probabilistic inference
 - Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$:
 \[P(E, B) = P(E)P(B \mid E) \]
 - $P(E = 1) = P(E = 0) = 1/2$
 - $P(B = r \mid E = 1) = 1/2$, $P(B = r \mid E = 0) = 0$
The envelope quiz

- Probabilistic inference
 - Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$:
 \[P(E, B) = P(E)P(B \mid E) \]
 - $P(E = 1) = P(E = 0) = 1/2$
 - $P(B = r \mid E = 1) = 1/2$, $P(B = r \mid E = 0) = 0$
 - The graphical model:
The envelope quiz

Probabilistic inference
- Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$:
 \[P(E, B) = P(E)P(B | E) \]
- $P(E = 1) = P(E = 0) = 1/2$
- $P(B = r | E = 1) = 1/2$, $P(B = r | E = 0) = 0$
- The graphical model:

\[E \quad \quad \quad B \]

Statistical decision theory: switch if $P(E = 1 | B = b) < 1/2$
The envelope quiz

- Probabilistic inference
 - Joint distribution on $E \in \{1, 0\}, B \in \{r, b\}$:
 \[
P(E, B) = P(E)P(B \mid E)
 \]
 - $P(E = 1) = P(E = 0) = 1/2$
 - $P(B = r \mid E = 1) = 1/2, P(B = r \mid E = 0) = 0$
 - The graphical model:
 \[
 \begin{aligned}
 E & \quad \quad \quad \quad B \\
 & \quad \quad \downarrow \\
 & \quad B
 \end{aligned}
 \]

- Statistical decision theory: switch if $P(E = 1 \mid B = b) < 1/2$
 - $P(E = 1 \mid B = b) = \frac{P(B=b\mid E=1)P(E=1)}{P(B=b)} = \frac{1/2 \times 1/2}{3/4} = 1/3$.
 Switch.
Reasoning with uncertainty

- The world is reduced to a set of random variables x_1, \ldots, x_d
Reasoning with uncertainty

- The world is reduced to a set of random variables x_1, \ldots, x_d
 - e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label
Reasoning with uncertainty

- The world is reduced to a set of random variables x_1, \ldots, x_d
 - e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label
- Inference: given joint distribution $p(x_1, \ldots, x_d)$, compute $p(X_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \ldots x_d\}$

Learning: estimate $p(x_1, \ldots, x_d)$ from training data $X^{(1)}, \ldots, X^{(N)}$, where $X^{(i)} = (x^{(i)}_1, \ldots, x^{(i)}_d)$
Reasoning with uncertainty

- The world is reduced to a set of random variables x_1, \ldots, x_d
 - e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label
- Inference: given joint distribution $p(x_1, \ldots, x_d)$, compute $p(X_Q | X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \ldots x_d\}$
 - e.g. $Q = \{d\}$, $E = \{1 \ldots d - 1\}$, by the definition of conditional

\[
p(x_d | x_1, \ldots, x_{d-1}) = \frac{p(x_1, \ldots, x_{d-1}, x_d)}{\sum_v p(x_1, \ldots, x_{d-1}, x_d = v)}
\]
Reasoning with uncertainty

- The world is reduced to a set of random variables x_1, \ldots, x_d
 - e.g. (x_1, \ldots, x_{d-1}) a feature vector, $x_d \equiv y$ the class label
- Inference: given joint distribution $p(x_1, \ldots, x_d)$, compute $p(X_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \ldots x_d\}$
 - e.g. $Q = \{d\}$, $E = \{1 \ldots d - 1\}$, by the definition of conditional

\[
p(x_d \mid x_1, \ldots, x_{d-1}) = \frac{p(x_1, \ldots, x_{d-1}, x_d)}{\sum_v p(x_1, \ldots, x_{d-1}, x_d = v)}
\]

- Learning: estimate $p(x_1, \ldots, x_d)$ from training data $X^{(1)}, \ldots, X^{(N)}$, where $X^{(i)} = (x_1^{(i)}, \ldots, x_d^{(i)})$
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naive storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q | X_E)$
 - Often can’t afford to do it by brute force
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
 - Often can’t afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q | X_E)$
 - Often can’t afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
 - Often can’t afford to do it by brute force
It is difficult to reason with uncertainty

- joint distribution $p(x_1, \ldots, x_d)$
 - exponential naïve storage (2^d for binary r.v.)
 - hard to interpret (conditional independence)
- inference $p(X_Q \mid X_E)$
 - Often can’t afford to do it by brute force
- If $p(x_1, \ldots, x_d)$ not given, estimate it from data
 - Often can’t afford to do it by brute force
- Graphical model: efficient representation, inference, and learning on $p(x_1, \ldots, x_d)$, exactly or approximately
What are graphical models?

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
What are graphical models?

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field

- Inference = $p(X_Q | X_E)$, in general
 $X_Q \cup X_E \subset \{x_1 \ldots x_d\}$

- Exact, MCMC, variational

- If $p(x_1, \ldots, x_d)$ not given, estimate it from data

- Parameter and structure learning
What are graphical models?

- Graphical model = joint distribution \(p(x_1, \ldots, x_d) \)
 - Bayesian network or Markov random field
 - conditional independence

- Inference = \(p(X_Q | X_E) \), in general
 \(X_Q \cup X_E \subset \{x_1, \ldots, x_d\} \)

- Exact, MCMC, variational

- If \(p(x_1, \ldots, x_d) \) not given, estimate it from data

- Parameter and structure learning
What are graphical models?

- **Graphical model** = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence
- **Inference** = $p(X_Q | X_E)$, in general $X_Q \cup X_E \subset \{x_1 \ldots x_d\}$
What are graphical models?

- Graphical model = joint distribution $p(x_1, \ldots, x_d)$
 - Bayesian network or Markov random field
 - conditional independence
- Inference = $p(X_Q \mid X_E)$, in general $X_Q \cup X_E \subset \{x_1 \ldots x_d\}$
 - exact, MCMC, variational
What are graphical models?

- Graphical model = joint distribution \(p(x_1, \ldots, x_d) \)
 - Bayesian network or Markov random field
 - conditional independence
- Inference = \(p(X_Q \mid X_E) \), in general \(X_Q \cup X_E \subset \{x_1 \ldots x_d\} \)
 - exact, MCMC, variational
- If \(p(x_1, \ldots, x_d) \) not given, estimate it from data
What are graphical models?

- Graphical model = joint distribution \(p(x_1, \ldots, x_d) \)
 - Bayesian network or Markov random field
 - conditional independence
- Inference = \(p(X_Q \mid X_E) \), in general \(X_Q \cup X_E \subset \{x_1 \ldots x_d\} \)
 - exact, MCMC, variational
- If \(p(x_1, \ldots, x_d) \) not given, estimate it from data
 - parameter and structure learning
Graphical-Model-Nots

- Graphical model is the study of *probabilistic models*
Graphical-Model-Nots

- Graphical model is the study of *probabilistic models*
- Just because there are nodes and edges doesn’t mean it’s a graphical model
Graphical-Model-Nots

- Graphical model is the study of *probabilistic models*
- Just because there are nodes and edges doesn’t mean it’s a graphical model
- These are not graphical models:
 - neural network
 - decision tree
 - network flow
 - HMM template (but HMMs are!)
Graphical Models

Probabilistic Inference

Directed vs. Undirected Graphical Models

Inference

Parameter Estimation

Kernel Methods

Support Vector Machines

Kernel PCA

Reproducing Kernel Hilbert Spaces
Directed graphical models
Directed graphical models

- Also called Bayesian networks
Directed graphical models

- Also called Bayesian networks
- A directed graph has nodes x_1, \ldots, x_d, some of them connected by directed edges $x_i \rightarrow x_j$
Directed graphical models

- Also called Bayesian networks
- A directed graph has nodes x_1, \ldots, x_d, some of them connected by directed edges $x_i \rightarrow x_j$
- A cycle is a directed path $x_1 \rightarrow \ldots \rightarrow x_k$ where $x_1 = x_k$
Directed graphical models

- Also called Bayesian networks
- A directed graph has nodes x_1, \ldots, x_d, some of them connected by directed edges $x_i \to x_j$
- A cycle is a directed path $x_1 \to \ldots \to x_k$ where $x_1 = x_k$
- A directed acyclic graph (DAG) contains no cycles
Directed graphical models

- A Bayesian network on the DAG is a family of distributions satisfying

\[
\{ p \mid p(x_1, \ldots, x_d) = \prod_i p(x_i \mid Pa(x_i)) \}
\]

where \(Pa(x_i) \) is the set of parents of \(x_i \).
Directed graphical models

- A Bayesian network on the DAG is a family of distributions satisfying

\[
\{ p \mid p(x_1, \ldots, x_d) = \prod_i p(x_i \mid Pa(x_i)) \}
\]

where \(Pa(x_i) \) is the set of parents of \(x_i \).

- \(p(x_i \mid Pa(x_i)) \) is the conditional probability distribution (CPD) at \(x_i \).
A Bayesian network on the DAG is a family of distributions satisfying

\[\{p \mid p(x_1, \ldots, x_d) = \prod_i p(x_i \mid Pa(x_i))\} \]

where \(Pa(x_i) \) is the set of parents of \(x_i \).

\(p(x_i \mid Pa(x_i)) \) is the conditional probability distribution (CPD) at \(x_i \).

By specifying the CPDs for all \(i \), we specify a joint distribution \(p(x_1, \ldots, x_d) \)
Example: Burglary, Earthquake, Alarm, John and Marry

Binary variables

\[P(B) = 0.001 \]
\[P(E) = 0.002 \]

\[
P(A | B, E) = 0.95
P(A | B, \neg E) = 0.94
P(A | \neg B, E) = 0.29
P(A | \neg B, \neg E) = 0.001
\]

\[
P(J | A) = 0.9
P(J | \neg A) = 0.05
P(M | A) = 0.7
P(M | \neg A) = 0.01
\]

\[
P(B, \neg E, A, J, \neg M)
= P(B)P(\neg E)P(A | B, \neg E)P(J | A)P(\neg M | A)
= 0.001 \times (1 - 0.002) \times 0.94 \times 0.9 \times (1 - 0.7)
\approx .000253
\]
Example: Naive Bayes

\[p(y, x_1, \ldots x_d) = p(y) \prod_{i=1}^{d} p(x_i \mid y) \]
Example: Naive Bayes

\[p(y, x_1, \ldots x_d) = p(y) \prod_{i=1}^{d} p(x_i | y) \]

- Plate representation on the right
Example: Naive Bayes

\[p(y, x_1, \ldots, x_d) = p(y) \prod_{i=1}^{d} p(x_i \mid y) \]

- Plate representation on the right
- \(p(y) \) multinomial
Example: Naive Bayes

\[p(y, x_1, \ldots, x_d) = p(y) \prod_{i=1}^{d} p(x_i \mid y) \]

- Plate representation on the right
- \(p(y) \) multinomial
- \(p(x_i \mid y) \) depends on the feature type: multinomial (count \(x_i \)), Gaussian (continuous \(x_i \)), etc.
No Causality Whatsoever

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
No Causality Whatsoever

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
- They only represent correlation (joint probability distribution)
No Causality Whatsoever

\[P(A) = a \]
\[P(B | A) = b \]
\[P(B | \sim A) = c \]

\(P(B) = ab + (1-a)c \)
\[P(A | B) = \frac{ab}{ab + (1-a)c} \]
\[P(A | \sim B) = \frac{a(1-b)}{1-ab - (1-a)c} \]

The two BNs are equivalent in all respects

- Do not read causality from Bayesian networks
- They only represent correlation (joint probability distribution)
- However, it is perfectly fine to design BNs causally
What do we need probabilistic models for?

- Make predictions. $p(y \mid x)$ plus decision theory
What do we need probabilistic models for?

- Make predictions. \(p(y \mid x) \) plus decision theory
- Interpret models. Very natural to include latent variables
Example: Latent Dirichlet Allocation (LDA)

A generative model for $p(\phi, \theta, z, w \mid \alpha, \beta)$:
For each topic t
\[\phi_t \sim \text{Dirichlet}(\beta) \]
For each document d
\[\theta \sim \text{Dirichlet}(\alpha) \]
For each word position in d
\[\text{topic } z \sim \text{Multinomial}(\theta) \]
\[\text{word } w \sim \text{Multinomial}(\phi_z) \]
Inference goals: $p(z \mid w, \alpha, \beta), \arg \max_{\phi, \theta} p(\phi, \theta \mid w, \alpha, \beta)$
Conditional Independence

- Two r.v.s A, B are independent if

\[
P(A, B) = P(A)P(B) \\
P(A|B) = P(A) \\
P(B|A) = P(B)
\]

- This extends to groups of r.v.s

- Conditional independence in a BN is precisely specified by d-separation ("directed separation").
Conditional Independence

- Two r.v.s A, B are independent if

\[
P(A, B) = P(A)P(B)
\]
\[
P(A|B) = P(A)
\]
\[
P(B|A) = P(B)
\]

- Two r.v.s A, B are conditionally independent given C if

\[
P(A, B | C) = P(A | C)P(B | C)
\]
\[
P(A | B, C) = P(A | C)
\]
\[
P(B | A, C) = P(B | C)
\]
Conditional Independence

- Two r.v.s A, B are independent if

\[
P(A, B) = P(A)P(B) \\
P(A|B) = P(A) \\
P(B|A) = P(B)
\]

- Two r.v.s A, B are conditionally independent given C if

\[
P(A, B | C) = P(A | C)P(B | C) \\
P(A | B, C) = P(A | C) \\
P(B | A, C) = P(B | C)
\]

- This extends to groups of r.v.s
Conditional Independence

- Two r.v.s A, B are independent if

$$P(A, B) = P(A)P(B)$$
$$P(A|B) = P(A)$$
$$P(B|A) = P(B)$$

- Two r.v.s A, B are conditionally independent given C if

$$P(A, B | C) = P(A | C)P(B | C)$$
$$P(A | B, C) = P(A | C)$$
$$P(B | A, C) = P(B | C)$$

- This extends to groups of r.v.s

- Conditional independence in a BN is precisely specified by d-separation ("directed separation")
d-Separation Case 1: Tail-to-Tail

- A, B in general dependent

[Diagram showing two scenarios:]

1. A and C are connected, and C blocks the path A-B.
2. A, B, and C are connected, with C shading and blocking the path A-B.
d-Separation Case 1: Tail-to-Tail

- A, B in general dependent
- A, B conditionally independent given C (observed nodes are shaded)
d-Separation Case 1: Tail-to-Tail

- A, B in general dependent
- A, B conditionally independent given C (observed nodes are shaded)
- An observed C is a tail-to-tail node, blocks the undirected path A-B
d-Separation Case 2: Head-to-Tail

- A, B in general dependent

A → C → B

A → C → B

An observed C is a head-to-tail node, blocks the path A-B
d-Separation Case 2: Head-to-Tail

- A, B in general dependent
- A, B conditionally independent given C
d-Separation Case 2: Head-to-Tail

- A, B in general dependent
- A, B conditionally independent given C
- An observed C is a head-to-tail node, blocks the path A-B
d-Separation Case 3: Head-to-Head

- A, B in general independent

A, B conditionally dependent given C, or any of C's descendants

An observed C is a head-to-head node, unblocks the path A-B
d-Separation Case 3: Head-to-Head

- A, B in general independent
- A, B conditionally dependent given C, or any of C’s descendants
d-Separation Case 3: Head-to-Head

- A, B in general independent
- A, B conditionally dependent given C, or any of C’s descendants
- An observed C is a head-to-head node, unblocks the path A-B
d-Separation

- Variable groups A and B are conditionally independent given C, if all undirected paths from nodes in A to nodes in B are blocked.
The undirected path from A to B is unblocked by E (because of C), and is not blocked by F.
d-Separation Example 1

- The undirected path from A to B is unblocked by E (because of C), and is not blocked by F
- A, B dependent given C
The path from A to B is blocked both at E and F
The path from A to B is blocked both at E and F
A, B conditionally independent given F
Undirected graphical models
Undirected graphical models

- Also known as Markov Random Fields
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- A clique \(C \) in an undirected graph is a set of fully connected nodes (full of loops!)
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- Define a nonnegative potential function $\psi_C : X_C \mapsto \mathbb{R}_+$
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- Define a nonnegative potential function $\psi_C : X_C \mapsto \mathbb{R}_+$
- An undirected graphical model is a family of distributions satisfying

\[
\left\{ p \mid p(X) = \frac{1}{Z} \prod_C \psi_C(X_C) \right\}
\]
Undirected graphical models

- Also known as Markov Random Fields
- Recall directed graphical models require a DAG and locally normalized CPDs
 - efficient computation
 - but restrictive
- A clique C in an undirected graph is a set of fully connected nodes (full of loops!)
- Define a nonnegative potential function $\psi_C: X_C \mapsto \mathbb{R}_+$
- An undirected graphical model is a family of distributions satisfying
 \[
 \left\{ p \mid p(X) = \frac{1}{Z} \prod_C \psi_C(X_C) \right\}
 \]
- $Z = \int \prod_C \psi_C(X_C) dX$ is the partition function
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
Example: A Tiny Markov Random Field

\[
\forall x_1, x_2 \in \{-1, 1\}
\]

\[\psi_C(x_1, x_2) = e^{ax_1x_2}\]

\[p(x_1, x_2) = \frac{1}{Z} e^{ax_1x_2}\]
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{ax_1x_2}$
- $Z = (e^a + e^{-a} + e^{-a} + e^a)$

When the parameter $a > 0$, favor homogeneous chains
When the parameter $a < 0$, favor inhomogeneous chains
Example: A Tiny Markov Random Field

- \(x_1, x_2 \in \{-1, 1\} \)
- A single clique \(\psi_C(x_1, x_2) = e^{ax_1 x_2} \)
- \(p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2} \)
- \(Z = (e^a + e^{-a} + e^{-a} + e^a) \)
- \(p(1, 1) = p(-1, -1) = e^a/(2e^a + 2e^{-a}) \)
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1 x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2}$
- $Z = (e^a + e^{-a} + e^{-a} + e^a)$
- $p(1, 1) = p(-1, -1) = e^a / (2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = e^{-a} / (2e^a + 2e^{-a})$
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1 x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2}$
- $Z = (e^a + e^{-a} + e^{-a} + e^a)$
- $p(1, 1) = p(-1, -1) = e^a / (2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = e^{-a} / (2e^a + 2e^{-a})$
- When the parameter $a > 0$, favor homogeneous chains
Example: A Tiny Markov Random Field

- $x_1, x_2 \in \{-1, 1\}$
- A single clique $\psi_C(x_1, x_2) = e^{ax_1 x_2}$
- $p(x_1, x_2) = \frac{1}{Z} e^{ax_1 x_2}$
- $Z = (e^a + e^{-a} + e^{-a} + e^a)$
- $p(1, 1) = p(-1, -1) = e^a/(2e^a + 2e^{-a})$
- $p(-1, 1) = p(1, -1) = e^{-a}/(2e^a + 2e^{-a})$
- When the parameter $a > 0$, favor homogeneous chains
- When the parameter $a < 0$, favor inhomogeneous chains
Log-Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
Log-Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

$$p(X) = \frac{1}{Z} \exp \left(\sum_{i=1}^{k} w_i f_i(X) \right)$$
Log-Linear Models

- Real-valued feature functions $f_1(X), \ldots, f_k(X)$
- Real-valued weights w_1, \ldots, w_k

\[
p(X) = \frac{1}{Z} \exp \left(\sum_{i=1}^{k} w_i f_i(X) \right)
\]

- Equivalent to MRF $p(X) = \frac{1}{Z} \prod_{C} \psi_C(X_C)$ with

\[
\psi_C(X_C) = \exp (w_C f_C(X))
\]
Example: Ising Model

This is an undirected model with \(x \in \{0, 1\} \).

\[
p_\theta(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)
\]

\[
\begin{align*}
\triangleright \quad & f_s(X) = x_s, \quad f_{st}(X) = x_s x_t \\
\end{align*}
\]
Example: Image Denoising

\[p_{\theta}(X \mid Y) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right) \]

\[\theta_s = \begin{cases}
 c & y_s = 1 \\
 -c & y_s = 0
\end{cases}, \quad \theta_{st} > 0 \]
Example: Gaussian Random Field

\[p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(X - \mu)^\top \Sigma^{-1}(X - \mu) \right) \]

- Multivariate Gaussian
Example: Gaussian Random Field

\[p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(X - \mu)^\top \Sigma^{-1}(X - \mu) \right) \]

- Multivariate Gaussian
- The \(n \times n \) covariance matrix \(\Sigma \) positive semi-definite
Example: Gaussian Random Field

$$p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(X - \mu)^\top \Sigma^{-1}(X - \mu) \right)$$

- Multivariate Gaussian
- The $n \times n$ covariance matrix Σ positive semi-definite
- Let $\Omega = \Sigma^{-1}$ be the precision matrix
Example: Gaussian Random Field

\[p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(X - \mu)^\top \Sigma^{-1}(X - \mu) \right) \]

- Multivariate Gaussian
- The \(n \times n \) covariance matrix \(\Sigma \) positive semi-definite
- Let \(\Omega = \Sigma^{-1} \) be the precision matrix
- \(x_i, x_j \) are conditionally independent given all other variables, if and only if \(\Omega_{ij} = 0 \)
Example: Gaussian Random Field

\[p(X) \sim N(\mu, \Sigma) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp \left(-\frac{1}{2}(X - \mu)^\top \Sigma^{-1}(X - \mu) \right) \]

- Multivariate Gaussian
- The \(n \times n \) covariance matrix \(\Sigma \) positive semi-definite
- Let \(\Omega = \Sigma^{-1} \) be the precision matrix
- \(x_i, x_j \) are conditionally independent given all other variables, if and only if \(\Omega_{ij} = 0 \)
- When \(\Omega_{ij} \neq 0 \), there is an edge between \(x_i, x_j \)
Two groups of variables A, B are conditionally independent given another group C, if A, B become disconnected by removing C and all edges involving C.
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
 Inference
 Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
Exact Inference
Inference by Enumeration

Let $X = (X_Q, X_E, X_O)$ for query, evidence, and other variables.
Inference by Enumeration

▶ Let $X = (X_Q, X_E, X_O)$ for query, evidence, and other variables.
▶ Goal: $P(X_Q | X_E)$
Inference by Enumeration

- Let $X = (X_Q, X_E, X_O)$ for query, evidence, and other variables.
- Goal: $P(X_Q \mid X_E)$

$$P(X_Q \mid X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}$$
Inference by Enumeration

Let \(X = (X_Q, X_E, X_O) \) for query, evidence, and other variables.

Goal: \(P(X_Q \mid X_E) \)

\[
P(X_Q \mid X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}
\]

Summing exponential number of terms: with \(k \) variables in \(X_O \) each taking \(r \) values, there are \(r^k \) terms
Inference by Enumeration

Let \(X = (X_Q, X_E, X_O) \) for query, evidence, and other variables.

Goal: \(P(X_Q | X_E) \)

\[
P(X_Q | X_E) = \frac{P(X_Q, X_E)}{P(X_E)} = \frac{\sum_{X_O} P(X_Q, X_E, X_O)}{\sum_{X_Q, X_O} P(X_Q, X_E, X_O)}
\]

Summing exponential number of terms: with \(k \) variables in \(X_O \) each taking \(r \) values, there are \(r^k \) terms

Not covered: Variable elimination and junction tree (aka clique tree)
Markov Chain Monte Carlo
Markov Chain Monte Carlo

- Forward sampling
Markov Chain Monte Carlo

- Forward sampling
- Gibbs sampling
Markov Chain Monte Carlo

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
Markov Chain Monte Carlo

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
- Not covered: block Gibbs, Metropolis-Hastings, etc.
Markov Chain Monte Carlo

- Forward sampling
- Gibbs sampling
- Collapsed Gibbs sampling
- Not covered: block Gibbs, Metropolis-Hastings, etc.
- Unbiased (after burn-in), but can have high variance
Monte Carlo Methods

- Consider the inference problem $p(X_Q = c_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \ldots x_d\}$

$$p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q=c_Q)} p(x_Q \mid X_E) \, dx_Q$$
Monte Carlo Methods

- Consider the inference problem \(p(X_Q = c_Q \mid X_E) \) where \(X_Q \cup X_E \subseteq \{x_1 \ldots x_d\} \)

\[
p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q=c_Q)} p(x_Q \mid X_E) \, dx_Q
\]

- If we can draw samples \(x_Q^{(1)}, \ldots x_Q^{(m)} \sim p(x_Q \mid X_E) \), an unbiased estimator is

\[
p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(x_Q^{(i)}=c_Q)}
\]
Monte Carlo Methods

Consider the inference problem \(p(X_Q = c_Q \mid X_E) \) where \(X_Q \cup X_E \subseteq \{x_1 \ldots x_d\} \)

\[
p(X_Q = c_Q \mid X_E) = \int 1_{(x_Q=c_Q)} p(x_Q \mid X_E) \, dx_Q
\]

If we can draw samples \(x_Q^{(1)}, \ldots x_Q^{(m)} \sim p(x_Q \mid X_E) \), an unbiased estimator is

\[
p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1_{(x_Q^{(i)}=c_Q)}
\]

The variance of the estimator decreases as \(O(1/m) \)
Monte Carlo Methods

Consider the inference problem $p(X_Q = c_Q \mid X_E)$ where $X_Q \cup X_E \subseteq \{x_1 \ldots x_d\}$

$$p(X_Q = c_Q \mid X_E) = \int 1(x_Q = c_Q) p(x_Q \mid X_E) \, dx_Q$$

If we can draw samples $x_Q^{(1)}, \ldots, x_Q^{(m)} \sim p(x_Q \mid X_E)$, an unbiased estimator is

$$p(X_Q = c_Q \mid X_E) \approx \frac{1}{m} \sum_{i=1}^{m} 1(x_Q^{(i)} = c_Q)$$

The variance of the estimator decreases as $O(1/m)$

Inference reduces to sampling from $p(x_Q \mid X_E)$
Forward Sampling

- Draw $X \sim P(X)$
Forward Sampling

- Draw $X \sim P(X)$
- Throw away X if it doesn’t match the evidence X_E
Forward Sampling: Example

To generate a sample $X = (B, E, A, J, M)$:

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
Forward Sampling: Example

To generate a sample $X = (B, E, A, J, M)$:

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $r < 0.001$ then $B = 1$ else $B = 0$

2. Sample $E \sim \text{Ber}(0.002)$
Forward Sampling: Example

To generate a sample \(X = (B, E, A, J, M) \):

1. Sample \(B \sim \text{Ber}(0.001) \): \(r \sim U(0, 1) \). If \(r < 0.001 \) then \(B = 1 \) else \(B = 0 \)

2. Sample \(E \sim \text{Ber}(0.002) \)

3. If \(B = 1 \) and \(E = 1 \), sample \(A \sim \text{Ber}(0.95) \), and so on
Forward Sampling: Example

To generate a sample $X = (B, E, A, J, M)$:

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
2. Sample $E \sim \text{Ber}(0.002)$
3. If $B = 1$ and $E = 1$, sample $A \sim \text{Ber}(0.95)$, and so on
4. If $A = 1$ sample $J \sim \text{Ber}(0.9)$ else $J \sim \text{Ber}(0.05)$
To generate a sample $X = (B, E, A, J, M)$:

1. Sample $B \sim \text{Ber}(0.001)$: $r \sim U(0, 1)$. If $(r < 0.001)$ then $B = 1$ else $B = 0$
2. Sample $E \sim \text{Ber}(0.002)$
3. If $B = 1$ and $E = 1$, sample $A \sim \text{Ber}(0.95)$, and so on
4. If $A = 1$ sample $J \sim \text{Ber}(0.9)$ else $J \sim \text{Ber}(0.05)$
5. If $A = 1$ sample $M \sim \text{Ber}(0.7)$ else $M \sim \text{Ber}(0.01)$
Inference with Forward Sampling

- Say the inference task is $P(B = 1 \mid E = 1, M = 1)$
Inference with Forward Sampling

Say the inference task is $P(B = 1 \mid E = 1, M = 1)$

Throw away all samples except those with $(E = 1, M = 1)$

$$p(B = 1 \mid E = 1, M = 1) \approx \frac{1}{m} \sum_{i=1}^{m} 1(B^{(i)} = 1)$$

where m is the number of surviving samples
Inference with Forward Sampling

- Say the inference task is \(P(B = 1 \mid E = 1, M = 1) \)
- Throw away all samples except those with \((E = 1, M = 1)\)

\[
p(B = 1 \mid E = 1, M = 1) \approx \frac{1}{m} \sum_{i=1}^{m} 1(B^{(i)} = 1)
\]

where \(m \) is the number of surviving samples
- Can be highly inefficient (note \(P(E = 1) \) tiny)
Inference with Forward Sampling

- Say the inference task is $P(B = 1 \mid E = 1, M = 1)$
- **Throw away** all samples except those with $(E = 1, M = 1)$

$$p(B = 1 \mid E = 1, M = 1) \approx \frac{1}{m} \sum_{i=1}^{m} 1(B^{(i)} = 1)$$

where m is the number of surviving samples

- Can be highly inefficient (note $P(E = 1)$ tiny)
- Does not work for Markov Random Fields (can’t sample from $P(X)$)
Gibbs Sampling: Example $P(B = 1 \mid E = 1, M = 1)$

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.

\[P(A \mid B, E) = 0.95 \]
\[P(A \mid B, \sim E) = 0.94 \]
\[P(A \mid \sim B, E) = 0.29 \]
\[P(A \mid \sim B, \sim E) = 0.001 \]
\[P(J \mid A) = 0.9 \]
\[P(J \mid \sim A) = 0.05 \]
\[P(M \mid A) = 0.7 \]
\[P(M \mid \sim A) = 0.01 \]
Gibbs Sampling: Example $P(B = 1 \mid E = 1, M = 1)$

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$

Example Values

- $P(E) = 0.002$
- $P(B) = 0.001$

<table>
<thead>
<tr>
<th>Event</th>
<th>Condition</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$B = 1$, $E = 1$</td>
<td>0.95</td>
</tr>
<tr>
<td>A</td>
<td>$B = 1$, $\neg E$</td>
<td>0.94</td>
</tr>
<tr>
<td>A</td>
<td>$\neg B$, E</td>
<td>0.29</td>
</tr>
<tr>
<td>A</td>
<td>$\neg B$, $\neg E$</td>
<td>0.001</td>
</tr>
<tr>
<td>J</td>
<td>A</td>
<td>0.9</td>
</tr>
<tr>
<td>J</td>
<td>$\neg A$</td>
<td>0.05</td>
</tr>
<tr>
<td>M</td>
<td>A</td>
<td>0.7</td>
</tr>
<tr>
<td>M</td>
<td>$\neg A$</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Diagram representation:

- Node B: $P(B) = 0.001$
- Node E: $P(E) = 0.002$
- Node A: Connections with B, E, J, M
- Node J: $P(J \mid A) = 0.9$, $P(J \mid \neg A) = 0.05$
- Node M: $P(M \mid A) = 0.7$, $P(M \mid \neg A) = 0.01$
Gibbs Sampling: Example $P(B = 1 \mid E = 1, M = 1)$

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models

\[P(B) = 0.001 \]
\[P(E) = 0.002 \]
\[P(A \mid B, E) = 0.95 \]
\[P(A \mid B, \neg E) = 0.94 \]
\[P(A \mid \neg B, E) = 0.29 \]
\[P(A \mid \neg B, \neg E) = 0.001 \]
\[P(J \mid A) = 0.9 \]
\[P(J \mid \neg A) = 0.05 \]
\[P(M \mid A) = 0.7 \]
\[P(M \mid \neg A) = 0.01 \]
Gibbs Sampling: Example $P(B = 1 \mid E = 1, M = 1)$

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models
- Initialization:

<table>
<thead>
<tr>
<th>Event</th>
<th>$P(B = 1)$</th>
<th>$P(E = 1)$</th>
<th>$P(M = 1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.95</td>
<td>0.002</td>
<td>0.7</td>
</tr>
<tr>
<td>B</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>0.9</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>M</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P(A \mid B, E) = 0.95$
$P(A \mid B, \sim E) = 0.94$
$P(A \mid \sim B, E) = 0.29$
$P(A \mid \sim B, \sim E) = 0.001$

$P(J \mid A) = 0.9$
$P(J \mid \sim A) = 0.05$

$P(M \mid A) = 0.7$
$P(M \mid \sim A) = 0.01$
Gibbs Sampling: Example $P(B = 1 \mid E = 1, M = 1)$

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from $p(x_Q \mid X_E)$
- Works for both graphical models
- Initialization:
 - Fix evidence; randomly set other variables

\[
\begin{align*}
P(A \mid B, E) &= 0.95 \\
P(A \mid B, \neg E) &= 0.94 \\
P(A \mid \neg B, E) &= 0.29 \\
P(A \mid \neg B, \neg E) &= 0.001 \\
P(J \mid A) &= 0.9 \\
P(J \mid \neg A) &= 0.05 \\
P(M \mid A) &= 0.7 \\
P(M \mid \neg A) &= 0.01 \\
P(B) &= 0.001 \\
P(E) &= 0.002 \\
E = 1 \\
M = 1
\end{align*}
\]
Gibbs Sampling: Example \(P(B = 1 \mid E = 1, M = 1) \)

- Gibbs sampling is a Markov Chain Monte Carlo (MCMC) method.
- Directly sample from \(p(x_Q \mid X_E) \)
- Works for both graphical models
- Initialization:
 - Fix evidence; randomly set other variables
 - e.g. \(X^{(0)} = (B = 0, E = 1, A = 0, J = 0, M = 1) \)
Gibbs Sampling

- For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value $x_i \sim P(x_i | X_{-i})$

- This is equivalent to $x_i \sim P(x_i | \text{MarkovBlanket}(x_i))$

- For a Bayesian network MarkovBlanket(x_i) includes x_i's parents, spouses, and children

- $P(x_i | \text{MarkovBlanket}(x_i)) \propto P(x_i | \text{Pa}(x_i)) \prod_{y \in C(x_i)} P(y | \text{Pa}(y))$

- Where $\text{Pa}(x_i)$ are the parents of x_i, and $C(x_i)$ the children of x_i

- For many graphical models the Markov Blanket is small.

- For example, $B \sim P(B | E=1, A=0) \propto P(B) P(A=0 | B,E=1)$

- $P(A | B, E) = 0.95$
- $P(A | B, \sim E) = 0.94$
- $P(A | \sim B, E) = 0.29$
- $P(A | \sim B, \sim E) = 0.001$

- $P(J | A) = 0.9$
- $P(J | \sim A) = 0.05$

- $P(M | A) = 0.7$
- $P(M | \sim A) = 0.01$
Gibbs Sampling

- For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value $x_i \sim P(x_i | X_{-i})$
- This is equivalent to $x_i \sim P(x_i | \text{MarkovBlanket}(x_i))$

For many graphical models the Markov Blanket is small.

For example, $B \sim P(B | E = 1, A = 0) \propto P(B) P(A = 0 | B, E = 1)$

- $P(A | B, E) = 0.95$
- $P(A | B, \neg E) = 0.94$
- $P(A | \neg B, E) = 0.29$
- $P(A | \neg B, \neg E) = 0.001$
- $P(J | A) = 0.9$
- $P(J | \neg A) = 0.05$
- $P(M | A) = 0.7$
- $P(M | \neg A) = 0.01$
Gibbs Sampling

- For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value $x_i \sim P(x_i \mid X_{-i})$
- This is equivalent to $x_i \sim P(x_i \mid \text{MarkovBlanket}(x_i))$
- For a Bayesian network $\text{MarkovBlanket}(x_i)$ includes x_i’s parents, spouses, and children

$$P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.

![Diagram of a Bayesian network with probabilities]

- $P(B) = 0.001$
- $P(E) = 0.002$
- $P(A \mid B, E) = 0.95$
- $P(A \mid B, \neg E) = 0.94$
- $P(A \mid \neg B, E) = 0.29$
- $P(A \mid \neg B, \neg E) = 0.001$
- $P(J \mid A) = 0.9$
- $P(J \mid A) = 0.05$
- $P(M \mid A) = 0.7$
- $P(M \mid A) = 0.01$
Gibbs Sampling

- For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value $x_i \sim P(x_i \mid X_{-i})$
- This is equivalent to $x_i \sim P(x_i \mid \text{MarkovBlanket}(x_i))$
- For a Bayesian network $\text{MarkovBlanket}(x_i)$ includes x_i's parents, spouses, and children

$$P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.
- For many graphical models the Markov Blanket is small.

![Bayesian Network Diagram]

- $P(B) = 0.001$
- $P(E) = 0.002$
- $P(A \mid B, E) = 0.95$
- $P(A \mid B, \sim E) = 0.94$
- $P(A \mid \sim B, E) = 0.29$
- $P(A \mid \sim B, \sim E) = 0.001$
- $P(J \mid A) = 0.9$
- $P(J \mid \sim A) = 0.05$
- $P(M \mid A) = 0.7$
- $P(M \mid \sim A) = 0.01$
Gibbs Sampling

- For each non-evidence variable x_i, fixing all other nodes X_{-i}, resample its value $x_i \sim P(x_i \mid X_{-i})$
- This is equivalent to $x_i \sim P(x_i \mid \text{MarkovBlanket}(x_i))$
- For a Bayesian network $\text{MarkovBlanket}(x_i)$ includes x_i’s parents, spouses, and children

$$P(x_i \mid \text{MarkovBlanket}(x_i)) \propto P(x_i \mid Pa(x_i)) \prod_{y \in C(x_i)} P(y \mid Pa(y))$$

where $Pa(x)$ are the parents of x, and $C(x)$ the children of x.
- For many graphical models the Markov Blanket is small.
- For example,

$$B \sim P(B \mid E = 1, A = 0) \propto P(B)P(A = 0 \mid B, E = 1)$$

![Bayesian Network Diagram]

- $P(E) = 0.002$
- $P(B) = 0.001$
- $P(A \mid B, E) = 0.95$
- $P(A \mid B, \neg E) = 0.94$
- $P(A \mid \neg B, E) = 0.29$
- $P(A \mid \neg B, \neg E) = 0.001$
- $P(J \mid A) = 0.9$
- $P(J \mid \neg A) = 0.05$
- $P(M \mid A) = 0.7$
- $P(M \mid \neg A) = 0.01$
Gibbs Sampling

Say we sampled $B = 1$. Then

$$X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$$
Gibbs Sampling

- Say we sampled $B = 1$. Then
 \[X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1) \]
- Starting from $X^{(1)}$, sample
 \[A \sim P(A \mid B = 1, E = 1, J = 0, M = 1) \]
to get $X^{(2)}$.
Gibbs Sampling

- Say we sampled $B = 1$. Then
 $X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$
- Starting from $X^{(1)}$, sample
 $A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$ to get $X^{(2)}$
- Move on to J, then repeat $B, A, J, B, A, J \ldots$
Gibbs Sampling

- Say we sampled $B = 1$. Then
 $$X^{(1)} = (B = 1, E = 1, A = 0, J = 0, M = 1)$$
- Starting from $X^{(1)}$, sample
 $$A \sim P(A \mid B = 1, E = 1, J = 0, M = 1)$$
to get $X^{(2)}$
- Move on to J, then repeat $B, A, J, B, A, J \ldots$
- Keep all samples after burn in. $P(B = 1 \mid E = 1, M = 1)$ is the fraction of samples with $B = 1$.
This is an undirected model with \(x \in \{0, 1\} \).

\[
p_\theta(x) = \frac{1}{Z} \exp \left(\sum_{s \in V} \theta_s x_s + \sum_{(s,t) \in E} \theta_{st} x_s x_t \right)
\]
Gibbs Example 2: The Ising Model

- The Markov blanket of x_s is A, B, C, D
Gibbs Example 2: The Ising Model

- The Markov blanket of x_s is A, B, C, D
- In general for undirected graphical models

$$p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})$$

$N(s)$ is the neighbors of s.
Gibbs Example 2: The Ising Model

- The Markov blanket of x_s is A, B, C, D
- In general for undirected graphical models

$$p(x_s \mid x_{-s}) = p(x_s \mid x_{N(s)})$$

$N(s)$ is the neighbors of s.
- The Gibbs update is

$$p(x_s = 1 \mid x_{N(s)}) = \frac{1}{\exp(- (\theta_s + \sum_{t \in N(s)} \theta_{st}x_t)) + 1}$$
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' | X)$
- Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' | X)$
- Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) | (X_{-i}, x_i)) = p(x'_i | X_{-i})$, and stationary distribution $p(x_Q | X_E)$
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix $T(X' \mid X)$
- Certain Markov chains have a stationary distribution π such that $\pi = T\pi$
- Gibbs sampler is such a Markov chain with $T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i})$, and stationary distribution $p(x_Q \mid X_E)$
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing
 - In practice “burn in”: discard $X^{(0)}, \ldots, X^{(T)}$
Gibbs Sampling as a Markov Chain

- A Markov chain is defined by a transition matrix \(T(X' \mid X) \)
- Certain Markov chains have a stationary distribution \(\pi \) such that \(\pi = T\pi \)
- Gibbs sampler is such a Markov chain with \(T_i((X_{-i}, x'_i) \mid (X_{-i}, x_i)) = p(x'_i \mid X_{-i}) \), and stationary distribution \(p(x_Q \mid X_E) \)
- But it takes time for the chain to reach stationary distribution (mix)
 - Can be difficult to assert mixing
 - In practice “burn in”: discard \(X^{(0)}, \ldots, X^{(T)} \)
 - Use all of \(X^{(T+1)}, \ldots \) for inference (they are correlated); Do not thin
Collapsed Gibbs Sampling

- In general, \(\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)}) \) for \(X^{(i)} \sim p \)
Collapsed Gibbs Sampling

- In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form
Collapsed Gibbs Sampling

- In general, \(\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)}) \) for \(X^{(i)} \sim p \)
- Sometimes \(X = (Y, Z) \) where \(\mathbb{E}_{Z|Y} \) has a closed-form
- If so,

\[
\mathbb{E}_p[f(X)] = \mathbb{E}_p(Y) \mathbb{E}_{p(Z|Y)}[f(Y, Z)] \\
\approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
\]

for \(Y^{(i)} \sim p(Y) \)
Collapsed Gibbs Sampling

- In general, \(\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)}) \) for \(X^{(i)} \sim p \)
- Sometimes \(X = (Y, Z) \) where \(\mathbb{E}_Z|Y \) has a closed-form
- If so,

\[
\mathbb{E}_p[f(X)] = \mathbb{E}_p(Y) \mathbb{E}_p(Z|Y)[f(Y, Z)] \approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_p(Z|Y^{(i)})[f(Y^{(i)}, Z)]
\]

for \(Y^{(i)} \sim p(Y) \)
- No need to sample \(Z \): it is collapsed
Collapsed Gibbs Sampling

- In general, \(\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)}) \) for \(X^{(i)} \sim p \)
- Sometimes \(X = (Y, Z) \) where \(\mathbb{E}_{Z|Y} \) has a closed-form
- If so,

\[
\mathbb{E}_p[f(X)] = \mathbb{E}_p(Y) \mathbb{E}_{p(Z|Y)}[f(Y, Z)] \\
\approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
\]

for \(Y^{(i)} \sim p(Y) \)
- No need to sample \(Z \): it is collapsed
- Collapsed Gibbs sampler \(T_i((Y_{-i}, y'_i) \mid (Y_{-i}, y_i)) = p(y'_i \mid Y_{-i}) \)
Collapsed Gibbs Sampling

- In general, $\mathbb{E}_p[f(X)] \approx \frac{1}{m} \sum_{i=1}^{m} f(X^{(i)})$ for $X^{(i)} \sim p$
- Sometimes $X = (Y, Z)$ where $\mathbb{E}_{Z|Y}$ has a closed-form
- If so,

\[
\mathbb{E}_p[f(X)] = \mathbb{E}_{p(Y)} \mathbb{E}_{p(Z|Y)}[f(Y, Z)] \\
\approx \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{p(Z|Y^{(i)})}[f(Y^{(i)}, Z)]
\]

for $Y^{(i)} \sim p(Y)$
- No need to sample Z: it is collapsed
- Collapsed Gibbs sampler $T_i((Y_{-i}, y'_i) \mid (Y_{-i}, y_i)) = p(y'_i \mid Y_{-i})$
- Note $p(y'_i \mid Y_{-i}) = \int p(y'_i, Z \mid Y_{-i}) dZ$
Example: Collapsed Gibbs Sampling for LDA

Collapse θ, ϕ, Gibbs update:

$$P(z_i = j \mid z_{-i}, w) \propto \frac{n^{(w_i)} - i,j + \beta n^{(d_i)} - i,j + \alpha}{n^{(\cdot)} - i,j + W \beta n^{(d_i)} - i,j + T \alpha}$$

- $n^{(w_i)}$: number of times word w_i has been assigned to topic j, excluding the current position
Example: Collapsed Gibbs Sampling for LDA

Collapse θ, ϕ, Gibbs update:

$$P(z_i = j \mid \mathbf{z}_{-i}, \mathbf{w}) \propto \frac{n^{(w_i)}_{-i,j} + \beta n^{(d_i)}_{-i,j} + \alpha}{n^{(\cdot)}_{-i,j} + W \beta n^{(d_i)}_{-i,j} + T \alpha}$$

- $n^{(w_i)}_{-i,j}$: number of times word w_i has been assigned to topic j, excluding the current position
- $n^{(d_i)}_{-i,j}$: number of times a word from document d_i has been assigned to topic j, excluding the current position
Example: Collapsed Gibbs Sampling for LDA

Collapse θ, ϕ, Gibbs update:

$$P(z_i = j \mid z_{-i}, w) \propto \frac{n^{(w_i)}_{-i,j} + \beta n^{(d_i)}_{-i,j} + \alpha}{n^{(\cdot)}_{-i,j} + W \beta n^{(d_i)}_{-i,j} + T \alpha}$$

- $n^{(w_i)}_{-i,j}$: number of times word w_i has been assigned to topic j, excluding the current position
- $n^{(d_i)}_{-i,j}$: number of times a word from document d_i has been assigned to topic j, excluding the current position
- $n^{(\cdot)}_{-i,j}$: number of times any word has been assigned to topic j, excluding the current position
Example: Collapsed Gibbs Sampling for LDA

Collapse θ, ϕ, Gibbs update:

$$P(z_i = j \mid z_{-i}, w) \propto \frac{n^{(w_i)} + \beta n^{(d_i)} + \alpha}{n^{(\cdot)} + W \beta n^{(d_i)} + T \alpha}$$

- $n^{(w_i)}$: number of times word w_i has been assigned to topic j, excluding the current position
- $n^{(d_i)}$: number of times a word from document d_i has been assigned to topic j, excluding the current position
- $n^{(\cdot)}$: number of times any word has been assigned to topic j, excluding the current position
- $n^{(d_i)}$: length of document d_i, excluding the current position
Belief Propagation
Factor Graph

- For both directed and undirected graphical models

![Factor Graph Diagram]

A \psi (A,B,C) B

\psi (A,B,C)

C

A \psi (A,B,C) B

\psi (A,B,C)

C
Factor Graph

- For both directed and undirected graphical models
- Bipartite: edges between a variable node and a factor node

\[
\begin{align*}
\psi(A,B,C) \\
\end{align*}
\]
Factor Graph

- For both directed and undirected graphical models
- Bipartite: edges between a variable node and a factor node
- Factors represent computation
The Sum-Product Algorithm

- Also known as belief propagation (BP)
The Sum-Product Algorithm

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as “loopy BP”, approximate
The Sum-Product Algorithm

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as “loopy BP”, approximate
- The algorithm involves passing messages on the factor graph
The Sum-Product Algorithm

- Also known as belief propagation (BP)
- Exact if the graph is a tree; otherwise known as "loopy BP", approximate
- The algorithm involves passing messages on the factor graph
- Alternative view: variational approximation (more later)
Example: A Simple HMM

The Hidden Markov Model template (not a graphical model)

\[
\begin{align*}
\pi_1 &= \pi_2 = 1/2 \\
P(x \mid z=1) &= (1/2, 1/4, 1/4) \\
P(x \mid z=2) &= (1/4, 1/2, 1/4) \\
\end{align*}
\]
Example: A Simple HMM

- Observing $x_1 = R$, $x_2 = G$, the directed graphical model
Example: A Simple HMM

- Observing $x_1 = R, x_2 = G$, the directed graphical model

- Factor graph

\[
P(z_1)P(x_1 | z_1) \quad P(z_2 | z_1)P(x_2 | z_2)
\]
Messages

- A message is a vector of length K, where K is the number of values x takes.
Messages

- A message is a vector of length K, where K is the number of values x takes.
- There are two types of messages:
Messages

- A message is a vector of length K, where K is the number of values x takes.
- There are two types of messages:
 1. $\mu_{f \rightarrow x}$: message from a factor node f to a variable node x
 $\mu_{f \rightarrow x}(i)$ is the ith element, $i = 1 \ldots K$.
Messages

- A message is a vector of length K, where K is the number of values x takes.

- There are two types of messages:
 1. $\mu_{f \to x}$: message from a factor node f to a variable node x
 $\mu_{f \to x}(i)$ is the ith element, $i = 1 \ldots K$.
 2. $\mu_{x \to f}$: message from a variable node x to a factor node f
Leaf Messages

- Assume tree factor graph. Pick an arbitrary root, say z_2

\[P(z_1)P(x_1 | z_1) \quad P(z_2 | z_1)P(x_2 | z_2) \]

\[P(x | z=1) = (1/2, 1/4, 1/4) \quad P(x | z=2) = (1/4, 1/2, 1/4) \]

\[\pi_1 = \pi_2 = 1/2 \]
Leaf Messages

- Assume tree factor graph. Pick an arbitrary root, say z_2.
- Start messages at leaves.
Leaf Messages

- Assume tree factor graph. Pick an arbitrary root, say z_2
- Start messages at leaves.
- If a leaf is a factor node f, $\mu_{f \rightarrow x}(x) = f(x)$

$$
\mu_{f_1 \rightarrow z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4
$$

$$
\mu_{f_1 \rightarrow z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8
$$

![Diagram of a factor graph with messages]
Leaf Messages

- Assume tree factor graph. Pick an arbitrary root, say z_2
- Start messages at leaves.
- If a leaf is a factor node f, $\mu_{f \rightarrow x}(x) = f(x)$

 \[
 \mu_{f_1 \rightarrow z_1}(z_1 = 1) = P(z_1 = 1)P(R|z_1 = 1) = 1/2 \cdot 1/2 = 1/4
 \]

 \[
 \mu_{f_1 \rightarrow z_1}(z_1 = 2) = P(z_1 = 2)P(R|z_1 = 2) = 1/2 \cdot 1/4 = 1/8
 \]
- If a leaf is a variable node x, $\mu_{x \rightarrow f}(x) = 1$

\[
\text{P(x | z=1)} = (1/2, 1/4, 1/4) \quad \text{P(x | z=2)} = (1/4, 1/2, 1/4)
\]
Message from Variable to Factor

- A node (factor or variable) can send out a message if all other incoming messages have arrived

\[
\mu_{x \rightarrow f_s}(x) = \prod_{f \in \text{ne}(x) \setminus f_s} \mu_{f \rightarrow x}(x)
\]

\[
\mu_{z_1 \rightarrow f_2}(z_1 = 1) = \frac{1}{4}, \quad \mu_{z_1 \rightarrow f_2}(z_1 = 2) = \frac{1}{8}
\]

\[
P(x \mid z=1) = (1/2, 1/4, 1/4) \quad P(x \mid z=2) = (1/4, 1/2, 1/4)
\]

\[
\pi_1 = \pi_2 = 1/2
\]
Message from Variable to Factor

- A node (factor or variable) can send out a message if all other incoming messages have arrived.
- Let x be in factor f_s. $ne(x) \setminus f_s$ are factors connected to x excluding f_s.

$$\mu_{x \rightarrow f_s}(x) = \prod_{f \in ne(x) \setminus f_s} \mu_{f \rightarrow x}(x)$$

$$\mu_{z_1 \rightarrow f_2}(z_1 = 1) = 1/4$$
$$\mu_{z_1 \rightarrow f_2}(z_1 = 2) = 1/8$$

$$P(z_1)P(x_1 | z_1) \quad P(z_2 | z_1)P(x_2 | z_2)$$

$$P(x | z=1) = (1/2, 1/4, 1/4) \quad P(x | z=2) = (1/4, 1/2, 1/4)$$

$\pi_1 = \pi_2 = 1/2$
Message from Factor to Variable

Let x be in factor f_s. Let the other variables in f_s be $x_1:M$.

$$\mu_{f_s \rightarrow x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m=1}^M \mu_{x_m \rightarrow f_s(x_m)}$$
Message from Factor to Variable

- Let \(x \) be in factor \(f_s \). Let the other variables in \(f_s \) be \(x_{1:M} \).

\[
\mu_{f_s \rightarrow x}(x) = \sum_{x_1} \ldots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m=1}^{M} \mu_{x_m \rightarrow f_s}(x_m)
\]

- In this example

\[
\mu_{f_2 \rightarrow z_2}(s) = \sum_{s'=1}^{2} \mu_{z_1 \rightarrow f_2}(s') f_2(z_1 = s', z_2 = s)
\]

\[
= 1/4 P(z_2 = s | z_1 = 1) P(x_2 = G | z_2 = s) + 1/8 P(z_2 = s | z_1 = 2) P(x_2 = G | z_2 = s)
\]
Message from Factor to Variable

- Let x be in factor f_s. Let the other variables in f_s be $x_{1:M}$.

$$
\mu_{f_s \to x}(x) = \sum_{x_1} \cdots \sum_{x_M} f_s(x, x_1, \ldots, x_M) \prod_{m=1}^{M} \mu_{x_m \to f_s}(x_m)
$$

- In this example

$$
\mu_{f_2 \to z_2}(s) = \sum_{s' = 1}^{2} \mu_{z_1 \to f_2}(s') f_2(z_1 = s', z_2 = s)
= 1/4 P(z_2 = s | z_1 = 1) P(x_2 = G | z_2 = s) + 1/8 P(z_2 = s | z_1 = 2) P(x_2 = G | z_2 = s)
$$

- We get $\mu_{f_2 \to z_2}(z_2 = 1) = 1/32$, $\mu_{f_2 \to z_2}(z_2 = 2) = 1/8$
The message has reached the root, pass it back down

\[\mu_{z_2 \rightarrow f_2}(z_2 = 1) = 1 \]
\[\mu_{z_2 \rightarrow f_2}(z_2 = 2) = 1 \]
\[
\mu_{f_2 \rightarrow z_1}(s) = \sum_{s' = 1}^{2} \mu_{z_2 \rightarrow f_2}(s') f_2(z_1 = s, z_2 = s')
= 1P(z_2 = 1|z_1 = s)P(x_2 = G|z_2 = 1)
+ 1P(z_2 = 2|z_1 = s)P(x_2 = G|z_2 = 2).
\]

\[\mu_{f_2 \rightarrow z_1}(s) = \sum_{s' = 1}^{2} \mu_{z_2 \rightarrow f_2}(s') f_2(z_1 = s, z_2 = s') \]
\[= 1P(z_2 = 1|z_1 = s)P(x_2 = G|z_2 = 1) + 1P(z_2 = 2|z_1 = s)P(x_2 = G|z_2 = 2). \]

We get
\[\mu_{f_2 \rightarrow z_1}(z_1 = 1) = \frac{7}{16} \]
\[\mu_{f_2 \rightarrow z_1}(z_1 = 2) = \frac{3}{8} \]
Once a variable receives all incoming messages, we compute its marginal as

\[p(x) \propto \prod_{f \in ne(x)} \mu_{f \rightarrow x}(x) \]
Once a variable receives all incoming messages, we compute its marginal as

\[p(x) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x) \]

In this example

\[
P(z_1|x_1, x_2) \propto \mu_{f_1 \rightarrow z_1} \cdot \mu_{f_2 \rightarrow z_1} = \left(\frac{1}{4} \right) \cdot \left(\frac{7}{16} \right) = \left(\frac{7}{64} \right) \Rightarrow \left(\frac{0.7}{0.3} \right)
\]

\[
P(z_2|x_1, x_2) \propto \mu_{f_2 \rightarrow z_2} = \left(\frac{1}{32} \right) \Rightarrow \left(\frac{0.2}{0.8} \right)
\]
Once a variable receives all incoming messages, we compute its marginal as

\[p(x) \propto \prod_{f \in ne(x)} \mu_{f \rightarrow x}(x) \]

In this example

\[P(z_1 | x_1, x_2) \propto \mu_{f_1 \rightarrow z_1} \cdot \mu_{f_2 \rightarrow z_1} = \left(\frac{1}{4} \right) \cdot \left(\frac{7}{16} \right) = \left(\frac{7}{64} \right) \Rightarrow \left(\frac{0.7}{0.3} \right) \]

\[P(z_2 | x_1, x_2) \propto \mu_{f_2 \rightarrow z_2} = \left(\frac{1}{32} \right) \Rightarrow \left(\frac{0.2}{0.8} \right) \]

One can also compute the marginal of the set of variables \(x_s \) involved in a factor \(f_s \)

\[p(x_s) \propto f_s(x_s) \prod_{x \in ne(f)} \mu_{x \rightarrow f}(x) \]
Observing $x = v$,
Handling Evidence

- Observing $x = v$,
 - we can absorb it in the factor (as we did); or
Handling Evidence

- Observing $x = v$,
 - we can absorb it in the factor (as we did); or
 - set messages $\mu_{x \rightarrow f}(x) = 0$ for all $x \neq v$
Handling Evidence

- Observing $x = v$,
 - we can absorb it in the factor (as we did); or
 - set messages $\mu_{x \rightarrow f}(x) = 0$ for all $x \neq v$

- Observing X_E,

\[
p(x | X_E) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x)
\]
Handling Evidence

- Observing \(x = v \),
 - we can absorb it in the factor (as we did); or
 - set messages \(\mu_{x \rightarrow f}(x) = 0 \) for all \(x \neq v \)

- Observing \(X_E \),
 - multiplying the incoming messages to \(x \notin X_E \) gives the joint (not \(p(x|X_E) \)):

 \[
p(x, X_E) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x)
 \]
Handling Evidence

- Observing $x = v$,
 - we can absorb it in the factor (as we did); or
 - set messages $\mu_{x \rightarrow f}(x) = 0$ for all $x \neq v$
- Observing X_E,
 - multiplying the incoming messages to $x \notin X_E$ gives the joint (not $p(x|X_E)$):

$$p(x, X_E) \propto \prod_{f \in \text{ne}(x)} \mu_{f \rightarrow x}(x)$$

- The conditional is easily obtained by normalization

$$p(x|X_E) = \frac{p(x, X_E)}{\sum_{x'} p(x', X_E)}$$
Loopy Belief Propagation

- So far, we assumed a tree graph
Loopy Belief Propagation

- So far, we assumed a tree graph
- When the factor graph contains loops, pass messages indefinitely until convergence
Loopy Belief Propagation

- So far, we assumed a tree graph
- When the factor graph contains loops, pass messages indefinitely until convergence
- Loopy BP may not converge, but “works” in many cases
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
- Inference
- Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
Parameter Learning

- Assume the graph structure is given
Parameter Learning

- Assume the graph structure is given
- Parameters:

\[
p(X) = \prod_i p(x_i | Pa(x_i), \theta_i)
\]

- Weights

\[
p(X) = \frac{1}{Z} \exp \left(\sum_{i=1}^k w_i f_i(X) \right)
\]
Parameter Learning

- Assume the graph structure is given
- Parameters:
 - θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

$$p(X) = \prod_i p(x_i \mid Pa(x_i), \theta_i)$$
Parameter Learning

- Assume the graph structure is given
- Parameters:
 - θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

 $$p(X) = \prod_i p(x_i \mid Pa(x_i), \theta_i)$$

- Weights w_i in undirected graphical model

 $$p(X) = \frac{1}{Z} \exp \left(\sum_{i=1}^{k} w_i f_i(X) \right)$$
Parameter Learning

- Assume the graph structure is given
- Parameters:
 - θ_i in CPDs $p(x_i \mid pa(x_i), \theta_i)$ in directed graphical models

 \[
p(X) = \prod_i p(x_i \mid Pa(x_i), \theta_i)
 \]
 - Weights w_i in undirected graphical model
 \[
p(X) = \frac{1}{Z} \exp \left(\sum_{i=1}^{k} w_i f_i(X) \right)
 \]
- Principle: maximum likelihood estimate
Parameter Learning: Maximum Likelihood Estimate

- **fully observed**: all dimensions of X are observed

\[
\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(X_i | \theta)
\]

- log likelihood factorizes for directed models (easy)

- gradient method for undirected models

- partially observed: $X = (X^o, X^h)$ where X^h unobserved

\[
\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log \left(\sum X^h p(X_i^o, X^h | \theta) \right)
\]

- log likelihood does not factorize

- The EM algorithm finds a local maximum
Parameter Learning: Maximum Likelihood Estimate

- **fully observed**: all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is

$$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(X^i | \theta)$$
Parameter Learning: Maximum Likelihood Estimate

- **fully observed**: all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is
 $$
 \hat{\theta} = \arg\max_\theta \sum_{i=1}^n \log p(X^i | \theta)
 $$
 - log likelihood factorizes for directed models (easy)

- **partially observed**: $X = (X^o, X^h)$ where X^h unobserved
 - given X^1^o, \ldots, X^n^o, the MLE is
 $$
 \hat{\theta} = \arg\max_\theta \sum_{i=1}^n \log \left(\sum_{X^h} p(X^i | \theta) \right)
 $$
 - log likelihood does not factorize
 - The EM algorithm finds a local maximum
Parameter Learning: Maximum Likelihood Estimate

- **fully observed:** all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is
 \[
 \hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(X^i | \theta)
 \]
 - log likelihood factorizes for directed models (easy)
 - gradient method for undirected models
Parameter Learning: Maximum Likelihood Estimate

- **fully observed**: all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is
 \[
 \hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(X^i | \theta)
 \]
 - log likelihood factorizes for directed models (easy)
 - gradient method for undirected models
- **partially observed**: $X = (X_o, X_h)$ where X_h unobserved
Parameter Learning: Maximum Likelihood Estimate

- **fully observed:** all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is
 \[
 \hat{\theta} = \operatorname{argmax}_\theta \sum_{i=1}^n \log p(X^i | \theta)
 \]
 - log likelihood factorizes for directed models (easy)
 - gradient method for undirected models

- **partially observed:** $X = (X_o, X_h)$ where X_h unobserved
 - given X^1_o, \ldots, X^n_o, the MLE is
 \[
 \hat{\theta} = \operatorname{argmax}_\theta \sum_{i=1}^n \log \left(\sum_{X_h} p(X^i_o, X_h | \theta) \right)
 \]
Parameter Learning: Maximum Likelihood Estimate

- **fully observed**: all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is
 $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(X^i | \theta)$$
 - log likelihood factorizes for directed models (easy)
 - gradient method for undirected models

- **partially observed**: $X = (X_o, X_h)$ where X_h unobserved
 - given X^1_o, \ldots, X^n_o, the MLE is
 $$\hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log \left(\sum_{X_h} p(X^i_o, X_h | \theta) \right)$$
 - log likelihood does not factorize
Parameter Learning: Maximum Likelihood Estimate

- **fully observed**: all dimensions of X are observed
 - given X^1, \ldots, X^n, the MLE is
 \[
 \hat{\theta} = \arg\max_{\theta} \sum_{i=1}^{n} \log p(X^i | \theta)
 \]
 - log likelihood factorizes for directed models (easy)
 - gradient method for undirected models
Structure Learning

- Let \mathcal{M} be all allowed candidate features
Structure Learning

- Let \mathcal{M} be all allowed candidate features
- Let $\mathcal{M} \subseteq \mathcal{M}$ be the “active subset”

\[P(X | M, \theta) = \frac{1}{Z} \exp \left(\sum_{i \in M} \theta_i f_i(X) \right) \]
Structure Learning

- Let \mathcal{M} be all allowed candidate features
- Let $\mathcal{M} \subseteq \mathcal{M}$ be the “active subset”

\[
P(X \mid M, \theta) = \frac{1}{Z} \exp \left(\sum_{i \in M} \theta_i f_i(X) \right)
\]

- $score(M) = \max_\theta \ln P(Data \mid M, \theta)$
Structure Learning

- Let \mathcal{M} be all allowed candidate features
- Let $\mathcal{M} \subseteq \mathcal{M}$ be the “active subset”

$$P(X \mid M, \theta) = \frac{1}{Z} \exp \left(\sum_{i \in M} \theta_i f_i(X) \right)$$

- $\text{score}(M) = \max_\theta \ln P(\text{Data} \mid M, \theta)$
- The score is always better for larger M – needs regularization or Bayesian treatment
Structure Learning

- Let \mathcal{M} be all allowed candidate features
- Let $\mathcal{M} \subseteq \mathcal{M}$ be the “active subset”

\[
P(X \mid M, \theta) = \frac{1}{Z} \exp \left(\sum_{i \in M} \theta_i f_i(X) \right)
\]

- $\text{score}(M) = \max_{\theta} \ln P(\text{Data} \mid M, \theta)$
- The score is always better for larger M – needs regularization or Bayesian treatment
- M and θ treated separately; combinatorial search over M
Consider a d-dimensional multivariate Gaussian $\mathcal{N}(\mu, \Sigma)$.
Structure Learning for Gaussian Random Fields

- Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$
- The graphical model has p nodes x_1, \ldots, x_d
Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$.

The graphical model has p nodes x_1, \ldots, x_d.

The edge between x_i, x_j is absent if and only if $\Omega_{ij} = 0$, where $\Omega = \Sigma^{-1}$.
Consider a d-dimensional multivariate Gaussian $N(\mu, \Sigma)$

The graphical model has p nodes x_1, \ldots, x_d

The edge between x_i, x_j is absent if and only if $\Omega_{ij} = 0$
where $\Omega = \Sigma^{-1}$

Equivalently, x_i, x_j are conditionally independent given other variables
Example

If we know \[\Sigma = \begin{pmatrix}
14 & -16 & 4 & -2 \\
-16 & 32 & -8 & 4 \\
4 & -8 & 8 & -4 \\
-2 & 4 & -4 & 5
\end{pmatrix} \]

Then \[\Omega = \Sigma^{-1} = \begin{pmatrix}
0 & 0.1667 & 0 & 0.0833 \\
0.1667 & 0 & 0.0833 & 0 \\
0.0833 & 0.0833 & 0 & 0.0417 \\
0 & 0.0417 & 0.2500 & 0.1667
\end{pmatrix} \]
Example

- If we know $\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}$

- Then $\Omega = \Sigma^{-1} = \begin{pmatrix} 0.1667 & 0.0833 & 0.0000 & 0 \\ 0.0833 & 0.0833 & 0.0417 & 0 \\ 0.0000 & 0.0417 & 0.2500 & 0.1667 \\ 0 & 0 & 0.1667 & 0.3333 \end{pmatrix}$
Example

- If we know $\Sigma = \begin{pmatrix} 14 & -16 & 4 & -2 \\ -16 & 32 & -8 & 4 \\ 4 & -8 & 8 & -4 \\ -2 & 4 & -4 & 5 \end{pmatrix}$

- Then $\Omega = \Sigma^{-1} = \begin{pmatrix} 0.1667 & 0.0833 & 0.0000 & 0 \\ 0.0833 & 0.0833 & 0.0417 & 0 \\ 0.0000 & 0.0417 & 0.2500 & 0.1667 \\ 0 & 0 & 0.1667 & 0.3333 \end{pmatrix}$

- The corresponding graphical model structure is
Let data be $X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$
Let data be $X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$

The log likelihood is
\[
\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^\top \Omega (X^{(i)} - \mu)
\]
Let data be $X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$

The log likelihood is
\[
\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^\top \Omega (X^{(i)} - \mu)
\]

The maximum likelihood estimate of Σ is the sample covariance
\[
S = \frac{1}{n} \sum_{i} (X^{(i)} - \bar{X})^\top (X^{(i)} - \bar{X})
\]

where \bar{X} is the sample mean
Structure Learning for Gaussian Random Fields

Let data be $X^{(1)}, \ldots, X^{(n)} \sim N(\mu, \Sigma)$

The log likelihood is
$$
\frac{n}{2} \log |\Omega| - \frac{1}{2} \sum_{i=1}^{n} (X^{(i)} - \mu)^\top \Omega (X^{(i)} - \mu)
$$

The maximum likelihood estimate of Σ is the sample covariance

$$
S = \frac{1}{n} \sum_{i} (X^{(i)} - \bar{X})^\top (X^{(i)} - \bar{X})
$$

where \bar{X} is the sample mean

S^{-1} is not a good estimate of Ω when n is small
For centered data, minimize a regularized problem instead:

\[- \log |\Omega| + \frac{1}{n} \sum_{i=1}^{n} X^{(i)\top} \Omega X^{(i)} + \lambda \sum_{i \neq j} |\Omega_{ij}|\]
For centered data, minimize a regularized problem instead:

\[- \log |\Omega| + \frac{1}{n} \sum_{i=1}^{n} X^{(i)\top} \Omega X^{(i)} + \lambda \sum_{i \neq j} |\Omega_{ij}|\]

- Known as GLASSO
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
- Inference
- Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
Kernel methods

- Traditionally, an item \(x \) is a feature vector in \(\mathbb{R}^d \)
 - Feature engineering decides what the features are
 - Learning algorithms work on \(x_1, \ldots, x_n \in \mathbb{R}^d \) directly
- Many algorithms actually only use inner products \(x_i^\top x_j \)

Data fully defined by \(n \times n \) matrix \(K \) where \(K_{ij} = x_i^\top x_j \)
We can just give \(K \) to these algorithms
What if we give any matrix \(K' \) to these algorithms?
They work if \(K' \) is positive semi-definition (kernel matrix)
There are feature vectors \(\phi(x) \in \mathbb{R}^D \) such that \(K'_{ij} = \phi(x_i)^\top \phi(x_j) \)
\(\phi(x) \) implicit feature engineering

Precise definition: Reproducing Kernel Hilbert Space (RKHS)
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^\top x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^\top x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
 - We can just give K to these algorithms
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^\top x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
 - We can just give K to these algorithms
- What if we give any matrix K' to these algorithms?
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^T x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^T x_j$
 - We can just give K to these algorithms
- What if we give any matrix K' to these algorithms?
 - They work if K' is positive semi-definition (kernel matrix)
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^\top x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
 - We can just give K to these algorithms
- What if we give any matrix K' to these algorithms?
 - They work if K' is positive semi-definition (kernel matrix)
 - There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^\top x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
 - We can just give K to these algorithms
- What if we give any matrix K' to these algorithms?
 - They work if K' is positive semi-definition (kernel matrix)
 - There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
 - $\phi(x)$ implicit feature engineering
Kernel methods

- Traditionally, an item x is a feature vector in \mathbb{R}^d
 - Feature engineering decides what the features are
 - Learning algorithms work on $x_1, \ldots, x_n \in \mathbb{R}^d$ directly
- Many algorithms actually only use inner products $x_i^\top x_j$
 - Data fully defined by $n \times n$ matrix K where $K_{ij} = x_i^\top x_j$
 - We can just give K to these algorithms
- What if we give any matrix K' to these algorithms?
 - They work if K' is positive semi-definition (kernel matrix)
 - There are feature vectors $\phi(x) \in \mathbb{R}^D$ such that $K'_{ij} = \phi(x_i)^\top \phi(x_j)$
 - $\phi(x)$ implicit feature engineering
- Precise definition: Reproducing Kernel Hilbert Space (RKHS)
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
- Inference
- Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
The Linearly Separable Case

- $x \in R^d$, $y \in \{-1, 1\}$
The Linearly Separable Case

- $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$
- discriminant function $f(x) = w^\top x + b$
The Linearly Separable Case

- $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$
- discriminant function $f(x) = w^\top x + b$
- classification rule $\text{sign}(f(x))$
The Linearly Separable Case

- $x \in \mathbb{R}^d$, $y \in \{-1, 1\}$
- discriminant function $f(x) = w^\top x + b$
- classification rule $\text{sign}(f(x))$
- linear decision boundary $\{x \in \mathbb{R}^d \mid f(x) = 0\}$ orthogonal to w
The Linearly Separable Case

Distance between a correctly classified x and the decision boundary:

$$\frac{yf(x)}{||w||}$$
The Linearly Separable Case

Training task: given \(\{(x, y)_{1:n}\} \), find a decision boundary \(w, b \) to maximize the distance to the closest point

\[
\max_{w, b} \min_{i=1}^{n} \frac{y_i(w^\top x_i + b)}{\|w\|}
\]
The Linearly Separable Case

Equivalently,

$$\max_{w,b} \frac{1}{||w||}$$

s.t. $y_i(w^\top x_i + b) \geq 1$ $i = 1 \ldots n$
The Linearly Separable Case

- Equivalently,

\[
\begin{align*}
\min_{w, b} & \quad \frac{1}{2} ||w||^2 \\
\text{s.t.} & \quad y_i (w^\top x_i + b) \geq 1 \quad i = 1 \ldots n
\end{align*}
\]
The Linearly Separable Case

- Equivalently,

\[
\min_{w,b} \quad \frac{1}{2} \|w\|^2
\]

\[s.t. \quad y_i(w^\top x_i + b) \geq 1 \quad i = 1 \ldots n\]

- Primal problem, uses feature vectors \(x_i \in \mathbb{R}^d\)
The Linearly Separable Case

- Equivalently,

\[\min_{w,b} \frac{1}{2} \|w\|^2 \]

s.t. \(y_i (w^\top x_i + b) \geq 1 \quad i = 1 \ldots n \)

- Primal problem, uses feature vectors \(x_i \in \mathbb{R}^d \)

- The equivalent dual problem will involve only inner products \(x_i^\top x_j \)
The Linearly Separable Case

The dual problem

\[
\begin{align*}
\max_{\alpha} & \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} & \quad \alpha_i \geq 0 \quad i = 1 \ldots n \\
& \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]
The Linearly Separable Case

- The dual problem

$$\max_{\alpha} \ - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{n} \alpha_i$$

s.t.

$$\alpha_i \geq 0 \quad i = 1 \ldots n$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

- $d + 1$ primal variables w, b
The Linearly Separable Case

- The dual problem

\[
\begin{align*}
\max_{\alpha} & \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} & \quad \alpha_i \geq 0 \quad i = 1 \ldots n \\
& \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]

- \(d + 1\) primal variables \(w, b\)
- \(n\) dual variables \(\alpha\) (interesting when \(d \gg n\))
The Linearly Separable Case

To classify a test point \(x \)

- primal discriminant function \(f(x) = w^\top x + b \)
The Linearly Separable Case

To classify a test point x

- primal discriminant function $f(x) = w^T x + b$
- dual discriminant function $f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^T x + b$
The Linearly Separable Case

To classify a test point x

- primal discriminant function $f(x) = w^\top x + b$
- dual discriminant function $f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^\top x + b$
- another inner-product
Support vectors

- The Karush-Kuhn-Tucker complementarity condition:
 \[\alpha_i (y_i (w^T x_i + b) - 1) = 0, \quad i = 1 \ldots n \]
Support vectors

- The Karush-Kuhn-Tucker complementarity condition:
 \[\alpha_i (y_i (w^T x_i + b) - 1) = 0, \quad i = 1 \ldots n \]
- \[y_i (w^T x_i + b) - 1 > 0 \] (\(x_i\) outside the margin) \(\Rightarrow\) \(\alpha_i = 0\) (\(x_i\) not support vector)
Support vectors

- The Karush-Kuhn-Tucker complementarity condition:
 \[\alpha_i (y_i (w^\top x_i + b) - 1) = 0, \quad i = 1 \ldots n \]

- \[y_i (w^\top x_i + b) - 1 > 0 \quad (x_i \text{ outside the margin}) \Rightarrow \alpha_i = 0 \quad (x_i \text{ not support vector}) \]

- \[\alpha_i \neq 0 \quad (x_i \text{ is support vector}) \Rightarrow y_i (w^\top x_i + b) = 1 \quad (x_i \text{ on the margin}) \]
The Non-Separable Case

- Relax margin constraints

\[y_i(w^\top x_i + b) \geq 1 - \xi_i \]
The Non-Separable Case

- Relax margin constraints

$$y_i(w^\top x_i + b) \geq 1 - \xi_i$$

- Slack variables $\xi_i \geq 0$
The Non-Separable Case

- Relax margin constraints

\[y_i (w^\top x_i + b) \geq 1 - \xi_i \]

- Slack variables \(\xi_i \geq 0 \)
- Large enough \(\xi_i \) allows \(x_i \) on the wrong side of the decision boundary
The Non-Separable Case

- Primal problem

\[
\min_{w,b,\xi} \quad \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t.} \quad y_i (w^\top x_i + b) \geq 1 - \xi_i \quad i = 1 \ldots n \\
\xi_i \geq 0
\]
The Non-Separable Case

- Dual problem

\[
\begin{align*}
\max_{\alpha} & \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} & \quad 0 \leq \alpha_i \leq C \quad i = 1 \ldots n \\
& \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]
The Non-Separable Case

- **Dual problem**

 \[
 \max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j + \sum_{i=1}^{n} \alpha_i \\
 \text{s.t.} \quad 0 \leq \alpha_i \leq C \quad i = 1 \ldots n \\
 \sum_{i=1}^{n} \alpha_i y_i = 0
 \]

- **Again, data enter optimization as inner products**
The Non-Separable Case

- **Dual problem**

\[
\max_{\alpha} \ -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} \quad 0 \leq \alpha_i \leq C \quad i = 1 \ldots n \\
\sum_{i=1}^{n} \alpha_i y_i = 0
\]

- **Again, data enter optimization as inner products**

- **Support vectors:**
The Non-Separable Case

- Dual problem

\[
\begin{align*}
\max_{\alpha} & \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} & \quad 0 \leq \alpha_i \leq C \quad i = 1 \ldots n \\
& \quad \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]

- Again, data enter optimization as inner products

- Support vectors:
 - \(\alpha_i = 0 \Rightarrow x_i \) not a support vector
The Non-Separable Case

- Dual problem

\[
\begin{align*}
\max_{\alpha} \quad & -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} \quad & 0 \leq \alpha_i \leq C \quad i = 1 \ldots n \\
& \sum_{i=1}^{n} \alpha_i y_i = 0
\end{align*}
\]

- Again, data enter optimization as inner products

- Support vectors:
 - \(\alpha_i = 0 \Rightarrow x_i \) not a support vector
 - \(0 < \alpha_i < C \Rightarrow \xi = 0 \), support vector \(x_i \) on the margin
The Non-Separable Case

- **Dual problem**

\[
\max_{\alpha} \quad -\frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^\top x_j + \sum_{i=1}^{n} \alpha_i \\
\text{s.t.} \quad 0 \leq \alpha_i \leq C \quad i = 1 \ldots n \\
\sum_{i=1}^{n} \alpha_i y_i = 0
\]

- Again, data enter optimization as inner products

- **Support vectors:**
 - \(\alpha_i = 0 \Rightarrow x_i\) not a support vector
 - \(0 < \alpha_i < C \Rightarrow \xi = 0\), support vector \(x_i\) on the margin
 - \(\alpha = C \Rightarrow x_i\) inside the margin if \(\xi \leq 1\), or on the wrong side of the decision boundary if \(\xi > 1\)
The Non-Separable Case

The discriminant function is

\[f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^T x + b \]
The Non-Separable Case

- The discriminant function is

\[f(x) = \sum_{i=1}^{n} \alpha_i y_i x_i^T x + b \]

- Inner product again
The Kernel Trick

- SVM dual problem only involves inner products $x_i \mathbf{T} x_j$
The Kernel Trick

- SVM dual problem only involves inner products $x_i^\top x_j$
- Let $K(x_i, x_j) = x_i^\top x_j$
SVM dual problem only involves inner products $x_i^T x_j$
Let $K(x_i, x_j) = x_i^T x_j$
Replace $x_i^T x_j$ with $K(x_i, x_j)$ everywhere
The Kernel Trick

- SVM dual problem only involves inner products $x_i^\top x_j$
- Let $K(x_i, x_j) = x_i^\top x_j$
- Replace $x_i^\top x_j$ with $K(x_i, x_j)$ everywhere
- Tautology
The Kernel Trick

- Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function.
The Kernel Trick

- Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function
- K p.d. if $\forall n, \forall x_1 \ldots x_n$ the matrix

$$K_n = \begin{bmatrix}
K(x_1, x_1) & \ldots & K(x_1, x_n) \\
\vdots & \ddots & \vdots \\
K(x_n, x_1) & \ldots & K(x_n, x_n)
\end{bmatrix}$$

is positive semi-definite.
The Kernel Trick

- Instead of $K(x_i, x_j) = x_i^\top x_j$, let K be any positive definite function.

- K p.d. if $\forall n, \forall x_1 \ldots x_n$ the matrix

$$K_n = \begin{bmatrix} K(x_1, x_1) & \ldots & K(x_1, x_n) \\ \vdots \\ K(x_n, x_1) & \ldots & K(x_n, x_n) \end{bmatrix}$$

is positive semi-definite.

- K_n positive semi-definite if $\forall \mathbf{z} = (z_1, \ldots, z_n)^\top \in \mathbb{R}^n$,

$$\mathbf{z}^\top K_n \mathbf{z} \geq 0$$
The Kernel Trick

P.d. K examples:

- Linear kernel

$$k(x_i, x_j) = x_i^\top x_j$$
The Kernel Trick

P.d. K examples:

- Linear kernel

\[k(x_i, x_j) = x_i^\top x_j \]

- Polynomial kernel

\[k(x_i, x_j) = (1 + x_i^\top x_j)^p \]
The Kernel Trick

P.d. K examples:

- Linear kernel
 \[k(x_i, x_j) = x_i^\top x_j \]

- Polynomial kernel
 \[k(x_i, x_j) = (1 + x_i^\top x_j)^p \]

- Radial Basis Function (RBF) kernel
 \[k(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right) \]
The Kernel Trick

- SVM dual problem can use any p.d. K (kernelize)
The Kernel Trick

- SVM dual problem can use any p.d. K (kernelize)
- There exists a feature mapping $\phi()$ such that

 $K(x_i, x_j) = \phi(x_i)\top\phi(x_j)$
The Kernel Trick

- SVM dual problem can use any p.d. K (kernelize)
- There exists a feature mapping $\phi()$ such that
 $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
 - $\phi()$ may not be finite dimensional
The Kernel Trick

- SVM dual problem can use any p.d. K (kernelize)
- There exists a feature mapping $\phi()$ such that

 $$K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$$

 - $\phi()$ may not be finite dimensional
 - $\phi()$ may not be unique
The Kernel Trick

- SVM dual problem can use any p.d. K (kernelize)
- There exists a feature mapping $\phi()$ such that
 $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
 - $\phi()$ may not be finite dimensional
 - $\phi()$ may not be unique
- What does the kernel trick buy us?
The Kernel Trick

- $x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$
The Kernel Trick

- $x_1 = -1(+)$, $x_2 = 0(-)$, $x_3 = 1(+) $
- Not a linearly separable dataset
The Kernel Trick

- $x_1 = -1(+)$, $x_2 = 0(-)$, $x_3 = 1(+)$
- Not a linearly separable dataset
- But we can map x to \mathbb{R}^3

$$\phi(x) = (1, \sqrt{2}x, x^2)^\top$$

and separate them with a hyperplane
The Kernel Trick

- $x_1 = -1(+)$, $x_2 = 0(-)$, $x_3 = 1(+)$
- Not a linearly separable dataset
- But we can map x to \mathbb{R}^3

$$\phi(x) = (1, \sqrt{2}x, x^2)^\top$$

and separate them with a hyperplane

- Non-linear decision boundary in the original space
The Kernel Trick

- $x_1 = -1(+), x_2 = 0(-), x_3 = 1(+)$
- Not a linearly separable dataset
- But we can map x to \mathbb{R}^3
 \[
 \phi(x) = (1, \sqrt{2}x, x^2)^\top
 \]
 and separate them with a hyperplane
- Non-linear decision boundary in the original space
- Equivalently, we used a kernel
 \[
 K(x_i, x_j) = \phi(x_i)^\top \phi(x_j) = (1 + x_i x_j)^2
 \]
 in linear SVM without slack variables.
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
- Inference
- Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
The Kernel Trick is not just for SVMs

Summary of the kernel trick:

- data as inner products
The Kernel Trick is not just for SVMs

Summary of the kernel trick:
- data as inner products
- p.d. K kernel
Summary of the kernel trick:

- data as inner products
- p.d. K kernel
- induced feature map $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
The Kernel Trick is not just for SVMs

Summary of the kernel trick:

- data as inner products
- p.d. K kernel
- induced feature map $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
- choosing the kernel K equivalent to feature engineering
The Kernel Trick is not just for SVMs

Summary of the kernel trick:

- data as inner products
- p.d. K kernel
- induced feature map $\phi()$ such that $K(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$
- choosing the kernel K equivalent to feature engineering
- many algorithms can be kernelized
Principal Component Analysis (PCA)

- Unsupervised learning

Given \(x_1, \ldots, x_n \in \mathbb{R}^d \), finds directions of maximum spread.

- Centering data: \(x_i \leftarrow x_i - \bar{x} \)
 - \(\bar{x} = \frac{1}{n} \sum_j x_j \)

- \(d \times d \) sample covariance matrix
 - \(C = \frac{1}{n} \sum_i x_i x_i^\top \)
Principal Component Analysis (PCA)

- Unsupervised learning
- Given $x_1 \ldots x_n \in \mathbb{R}^d$, finds directions of maximum spread

Centering data:

$$x_i \leftarrow x_i - \bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_j x_j$$

$d \times d$ sample covariance matrix

$$C = \frac{1}{n} \sum_i x_i x_i^\top$$
Principal Component Analysis (PCA)

- Unsupervised learning
- Given \(x_1 \ldots x_n \in \mathbb{R}^d \), finds directions of maximum spread
- Centering data:
 \[
 x_i \leftarrow x_i - \bar{x}
 \]
 where \(\bar{x} = \frac{1}{n} \sum_j x_j \)
Principal Component Analysis (PCA)

- Unsupervised learning
- Given $x_1 \ldots x_n \in \mathbb{R}^d$, finds directions of maximum spread
- Centering data:
 \[x_i \leftarrow x_i - \bar{x} \]
 where $\bar{x} = \frac{1}{n} \sum_j x_j$
- $d \times d$ sample covariance matrix
 \[C = \frac{1}{n} \sum_i x_i x_i^\top \]
PCA

- Eigendecomposition

\[C = U \Lambda U^\top = \sum_{j=1}^{d} \lambda_j u_j u_j^\top \]
PCA

- Eigendecomposition

\[C = U \Lambda U^\top = \sum_{j=1}^{d} \lambda_j u_j u_j^\top \]

- Eigenvalues \(\lambda_1 \geq \ldots \geq \lambda_d \geq 0 \) the variances
PCA

- Eigendecomposition

\[C = U \Lambda U^\top = \sum_{j=1}^{d} \lambda_j u_j u_j^\top \]

- Eigenvalues \(\lambda_1 \geq \ldots \geq \lambda_d \geq 0 \) the variances

- Eigenvectors \(u_1 \ldots u_d \) the principal components with decreasing importance

\[C u_j = \lambda_j u_j, \quad j = 1 \ldots d \]
PCA

- Eigendecomposition

\[C = U \Lambda U^\top = \sum_{j=1}^{d} \lambda_j u_j u_j^\top \]

- Eigenvalues \(\lambda_1 \geq \ldots \geq \lambda_d \geq 0 \) the variances

- Eigenvectors \(u_1 \ldots u_d \) the principal components with decreasing importance

\[Cu_j = \lambda_j u_j, \quad j = 1 \ldots d \]

- \(u_1 \ldots u_d \) orthonormal basis of \(\mathbb{R}^d \), rotated axes
PCA

- Dimension reduction: project to the top $k \leq d$ directions
PCA

- Dimension reduction: project to the top $k \leq d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
PCA

- Dimension reduction: project to the top $k \leq d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
- $x \in \mathbb{R}^d$ projected to \mathbb{R}^k by

$$U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix}$$

U_k minimizes training set ℓ_2-error among rank-k projections

$$n \sum_{i=1}^{n} \| x_i - U_k^\top x_i \|_2^2$$

So far PCA with feature vectors in \mathbb{R}^d. Next: PCA with inner products
PCA

- Dimension reduction: project to the top $k \leq d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
- $x \in \mathbb{R}^d$ projected to \mathbb{R}^k by
 \[U_k^\top x = \begin{bmatrix} u_1^\top x \\ \vdots \\ u_k^\top x \end{bmatrix} \]
- U_k minimizes training set ℓ_2-error among rank-k projections
 \[\sum_{i=1}^{n} \| x_i - U_k^\top x_i \|_2^2 \]
PCA

- Dimension reduction: project to the top $k \leq d$ directions
- U_k the first k columns of $U = [u_1 \mid u_2 \mid \ldots \mid u_d]$
- $x \in \mathbb{R}^d$ projected to \mathbb{R}^k by
 \[
 U_k^\top x = \begin{bmatrix}
 u_1^\top x \\
 \vdots \\
 u_k^\top x
 \end{bmatrix}
 \]
- U_k minimizes training set ℓ_2-error among rank-k projections
 \[
 \sum_{i=1}^{n} \|x_i - U_k^\top x_i\|_2^2
 \]
- So far PCA with feature vectors in \mathbb{R}^d. Next: PCA with inner products
PCA with inner products

- For $j = 1 \ldots d$

\[
Cu_j = \lambda_j u_j
\]

\[
\frac{1}{n} \sum_{i=1}^{n} x_i x_i^T u_j = \lambda_j u_j
\]

\[
\sum_{i=1}^{n} \frac{(x_i^T u_j)}{n \lambda_j} x_i = u_j
\]
PCA with inner products

▶ For $j = 1 \ldots d$

\[Cu_j = \lambda_j u_j \]
\[
\frac{1}{n} \sum_{i=1}^{n} x_i x_i^\top u_j = \lambda_j u_j
\]
\[
\sum_{i=1}^{n} \frac{(x_i^\top u_j)}{n \lambda_j} x_i = u_j
\]

▶ Any u_j can be written in the form

\[u_j = \sum_{i=1}^{n} \alpha_{ji} x_i \]
PCA with inner products

▶ For $j = 1 \ldots d$

\[
Cu_j = \lambda_j u_j
\]

\[
\frac{1}{n} \sum_{i=1}^{n} x_i x_i^\top u_j = \lambda_j u_j
\]

\[
\sum_{i=1}^{n} \frac{(x_i^\top u_j)}{n\lambda_j} x_i = u_j
\]

▶ Any u_j can be written in the form

\[
 u_j = \sum_{i=1}^{n} \alpha_{ji} x_i
\]

▶ $\alpha_{ji} \in \mathbb{R}$, value not obvious (involving u_j)
PCA with inner products

- $n \times n$ matrix K with $K_{ij} = x_i^\top x_j$
PCA with inner products

- $n \times n$ matrix K with $K_{ij} = x_i^\top x_j$
- $\alpha_j = (\alpha_{j1}, \ldots, \alpha_{jn})^\top$ satisfy the eigenvalue equation

\[K\alpha_j = n\lambda_j \alpha_j \]
Why?

\[x_i^\top \left(\frac{1}{n} \sum_{k=1}^{n} x_k x_k^\top \right) \left(\sum_{m=1}^{n} \alpha_{jm} x_m \right) = \frac{1}{n} \sum_{k=1}^{n} \sum_{m=1}^{n} \alpha_{jm} x_i^\top x_k x_k^\top x_m = \sum_{m=1}^{n} \lambda_j \alpha_{jm} x_i^\top x_m \]

\[\frac{1}{n} \sum_{k=1}^{n} \sum_{m=1}^{n} \alpha_{jm} K_{ik} K_{km} = \sum_{m=1}^{n} \lambda_j \alpha_{jm} K_{im} \]

\[\frac{1}{n} K_i . K \alpha_j = \lambda_j K_i . \alpha_j , \quad i = 1 \ldots n \]

\[\frac{1}{n} K K \alpha_j = \lambda_j K \alpha_j \]

\[K \alpha_j = n \lambda_j \alpha_j \]

assuming \(n \leq d \) and \(K \) invertible
PCA with inner products

\[\alpha_j = (\alpha_{j1}, \ldots, \alpha_{jn})^\top \] satisfy the eigenvalue equation

\[K\alpha_j = n\lambda_j \alpha_j \]
PCA with inner products

- \(\alpha_j = (\alpha_{j1}, \ldots, \alpha_{jn})^\top \) satisfy the eigenvalue equation

\[
K \alpha_j = n \lambda_j \alpha_j
\]

- Norm of \(\alpha_j \) is also fixed:

\[
\|u_j\| = 1 \\
u_j^\top u_j = 1 \\
\sum_{k,m=1}^n \alpha_{jk} x_k^\top x_m \alpha_{jm} = 1 \\
\sum_{k,m=1}^n \alpha_{jk} K_{km} \alpha_{jm} = 1 \\
\alpha_j^\top K \alpha_j = 1 \\
\alpha_j^\top n \lambda_j \alpha_j = 1 \\
\|\alpha_j\| = \sqrt{\frac{1}{n \lambda_j}}
\]
PCA with inner products

- Compute $\alpha_1, \ldots, \alpha_k$ by solving the eigenvalue equation (k largest eigenvalues)
PCA with inner products

- Compute $\alpha_1, \ldots, \alpha_k$ by solving the eigenvalue equation (k largest eigenvalues)
- Project (new) point x to top $k \leq n$ directions

\[
\begin{bmatrix}
 u_1^\top x \\
 \vdots \\
 u_k^\top x
\end{bmatrix} =
\begin{bmatrix}
 \sum_{i=1}^n \alpha_{1i} x_i^\top x \\
 \vdots \\
 \sum_{i=1}^n \alpha_{ki} x_i^\top x
\end{bmatrix} =
\begin{bmatrix}
 \alpha_1^\top K x \\
 \vdots \\
 \alpha_k^\top K x
\end{bmatrix}
\]

where $K_x = (K(x_1, x), \ldots, K(x_n, x))^\top$ and $K(x_i, x) = x_i^\top x$
Kernel PCA

Perhaps replacing $K_{ij} = x_i^T x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space.
Kernel PCA

Perhaps replacing $K_{ij} = x_i^\top x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space
- But... is the training set centered $\sum_{i=1}^{n} \phi(x_i) = 0$?
Kernel PCA

Perhaps replacing $K_{ij} = x_i^\top x_j$ with any kernel $K(x_i, x_j)$?

- Equivalently, we are doing standard PCA in $\phi(x)$ space
- But... is the training set centered $\sum_{i=1}^n \phi(x_i) = 0$?
- Need to center K
Centering the kernel for training

\[
\phi'(x_i) = \phi(x_i) - \frac{1}{n} \sum_{k=1}^{n} \phi(x_k)
\]

\[
\phi'(x_i)^\top \phi'(x_j) = \left(\phi(x_i) - \frac{1}{n} \sum_{k=1}^{n} \phi(x_k) \right)^\top \left(\phi(x_j) - \frac{1}{n} \sum_{k=1}^{n} \phi(x_k) \right)
\]

\[
K'_{ij} = K_{ij} - \frac{1}{n} \sum_{k=1}^{n} K_{jk} - \frac{1}{n} \sum_{k=1}^{n} K_{ik} + \frac{1}{n^2} \sum_{k,m=1}^{n} K_{km}
\]

Finding \(\alpha_j \) by solving the eigenvalue problem

\[
K' \alpha_j = n \lambda_j \alpha_j
\]
Projecting (new) point x with centering

- New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$
Projecting (new) point x with centering

- New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
Projecting (new) point x with centering

- New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall j-th projection is $\alpha_j^\top K'_x$
Projecting (new) point x with centering

- New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall j-th projection is $\alpha_j^\top K'_x$
- $K'_x = (K'(x_1, x), \ldots, K'(x_n, x))^\top$
Projecting (new) point x with centering

- New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall j-th projection is $\alpha_j^\top K_x'$
- $K_x' = (K'(x_1, x), \ldots, K'(x_n, x))^\top$
Projecting (new) point x with centering

- New point x needs to be centered $\phi'(x) = \phi(x) - \sum_{i=1}^{n} \phi(x_i)$
- Note x not involved in computing the training set mean
- Recall j-th projection is $\alpha_j^\top K'_x$
- $K'_x = (K'(x_1, x), \ldots, K'(x_n, x))^\top$

$$K'(x_i, x) = K(x_i, x) - \frac{1}{n} \sum_{k=1}^{n} K(x_k, x) - \frac{1}{n} \sum_{k=1}^{n} K_{ik} + \frac{1}{n^2} \sum_{k,m=1}^{n} K_{km}$$
Outline

Graphical Models
- Probabilistic Inference
- Directed vs. Undirected Graphical Models
- Inference
- Parameter Estimation

Kernel Methods
- Support Vector Machines
- Kernel PCA
- Reproducing Kernel Hilbert Spaces
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\| \cdot \| : \mathcal{F} \to \mathbb{R}_{\geq 0}$ is a norm if

- $\| f \|_\mathcal{F} = 0$ iff $f = 0$ (separation)
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\| \cdot \| : \mathcal{F} \rightarrow \mathbb{R}_{\geq 0}$ is a norm if

- $\|f\| = 0$ iff $f = 0$ (separation)
- $\|af\| = |a|\|f\|$ (positive homogeneity)
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\| \cdot \| : \mathcal{F} \mapsto \mathbb{R}_{\geq 0}$ is a norm if

- $\| f \|_{\mathcal{F}} = 0$ iff $f = 0$ (separation)
- $\| af \|_{\mathcal{F}} = |a| \| f \|_{\mathcal{F}}$ (positive homogeneity)
- $\| f + g \|_{\mathcal{F}} \leq \| f \|_{\mathcal{F}} + \| g \|_{\mathcal{F}}$ (triangle inequality)
Example

- Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$
Example

- Let μ be a positive measure on $\mathcal{X} \subset \mathbb{R}^d$ and $p \geq 1$
- Let $L_p(\mathcal{X}, \mu) = \{ f : \mathcal{X} \mapsto \mathbb{R} \text{ measurable} | \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \}$
Let μ be a positive measure on $X \subset \mathbb{R}^d$ and $p \geq 1$

Let $L_p(X, \mu) = \{ f : X \mapsto \mathbb{R} \text{ measurable} \mid \int_X |f(x)|^p \, d\mu < \infty \}$

$\|f\|_p = \left(\int_X |f(x)|^p \, d\mu \right)^{\frac{1}{p}}$ is a norm
A sequence \(\{f_n\}_{n=1}^{\infty} \) of elements of a normed vector space \((\mathcal{F}, \| \cdot \|_{\mathcal{F}})\) is a Cauchy sequence if:

1. \(\forall \epsilon > 0, \exists N \)
A sequence \(\{ f_n \}_{n=1}^{\infty} \) of elements of a normed vector space \((\mathcal{F}, \| \cdot \|_{\mathcal{F}})\) is a Cauchy sequence if:

- \(\forall \epsilon > 0, \exists N \)
- \(\forall n, m \geq N, \| f_n - f_m \|_{\mathcal{F}} < \epsilon \)
A sequence \(\{f_n\}_{n=1}^{\infty} \) of elements of a normed vector space \((\mathcal{F}, \| \cdot \|_F)\) converges to \(f \in \mathcal{F} \) if:

- \(\forall \epsilon > 0, \exists N \)
Convergent sequence

A sequence \(\{f_n\}_{n=1}^{\infty} \) of elements of a normed vector space \((\mathcal{F}, \| \cdot \|_\mathcal{F})\) converges to \(f \in \mathcal{F} \) if:

- \(\forall \epsilon > 0, \exists N \)
- \(\forall n \geq N, \|f_n - f\|_\mathcal{F} < \epsilon \)
A sequence \(\{f_n\}_{n=1}^{\infty} \) of elements of a normed vector space \((\mathcal{F}, \| \cdot \|_\mathcal{F}) \) converges to \(f \in \mathcal{F} \) if:

- \(\forall \epsilon > 0, \exists N \)
- \(\forall n \geq N, \|f_n - f\|_\mathcal{F} < \epsilon \)
- \(f \) must be in \(\mathcal{F} \)
Cauchy may not converge

- Convergent \Rightarrow Cauchy
Cauchy may not converge

- Convergent \Rightarrow Cauchy
- Cauchy may not converge (in \mathcal{F})
Cauchy may not converge

- Convergent \implies Cauchy
- Cauchy may not converge (in \mathcal{F})
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$
Cauchy may not converge

- Convergent \Rightarrow Cauchy
- Cauchy may not converge (in \mathcal{F})
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$
- $\|f\| = \sqrt{\int_0^1 f(x)^2 \, dx}$

$\{$$f_n(x)$$\}$ is Cauchy, but not convergent (limit $\not\in C[0, 1]$)
Cauchy may not converge

- Convergent \Rightarrow Cauchy
- Cauchy may not converge (in \mathcal{F})
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$
- $\|f\| = \sqrt{\int_0^1 f(x)^2 \, dx}$
- $f_n(x) = 0$ for $x \in [0, \frac{1}{2} - \frac{1}{n}]$, 1 otherwise
Cauchy may not converge

- Convergent \implies Cauchy
- Cauchy may not converge (in \mathcal{F})
- Example: $C[0, 1]$ bounded continuous functions on $[0, 1]$
 - $\|f\| = \sqrt{\int_0^1 f(x)^2 \, dx}$
 - $f_n(x) = 0$ for $x \in [0, \frac{1}{2} - \frac{1}{n}]$, 1 otherwise
 - $\{f_n(x)\}$ is Cauchy, but not convergent (limit $\not\in C[0, 1]$)
Banach space

- One may complete the vector space by adding the limits of all Cauchy sequences.
Banach space

- One may complete the vector space by adding the limits of all Cauchy sequences
- A Banach space is a complete normed space
One may complete the vector space by adding the limits of all Cauchy sequences.

A Banach space is a complete normed space.

Example: $L_p(\mathcal{X}, \mu) = \{ f : \mathcal{X} \mapsto \mathbb{R} \text{ measurable} \mid \int_{\mathcal{X}} |f(x)|^p d\mu < \infty \}$

with norm $\| f \|_p = \left(\int_{\mathcal{X}} |f(x)|^p d\mu \right)^{\frac{1}{p}}$ is a Banach space.
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}$ is an inner product if

- $\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a\langle f_1, g \rangle_{\mathcal{F}} + b\langle f_2, g \rangle_{\mathcal{F}}$
- $\langle f, g \rangle_{\mathcal{F}} = \langle g, f \rangle_{\mathcal{F}}$
- $\langle f, f \rangle_{\mathcal{F}} \geq 0$ with 0 iff $f = 0$
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if

1. $\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a\langle f_1, g \rangle_{\mathcal{F}} + b\langle f_2, g \rangle_{\mathcal{F}}$
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \mapsto \mathbb{R}$ is an inner product if
\begin{itemize}
 \item $\langle af_1 + bf_2, g \rangle_{\mathcal{F}} = a\langle f_1, g \rangle_{\mathcal{F}} + b\langle f_2, g \rangle_{\mathcal{F}}$
 \item $\langle f, g \rangle_{\mathcal{F}} = \langle g, f \rangle_{\mathcal{F}}$
 \item $\langle f, f \rangle_{\mathcal{F}} \geq 0$ with 0 iff $f = 0$
\end{itemize}

An inner product space is a normed space with $\|f\| = \sqrt{\langle f, f \rangle_{\mathcal{F}}}$.
Let F be a vector space over \mathbb{R}. A function $\langle \cdot, \cdot \rangle_F : F \times F \mapsto \mathbb{R}$ is an inner product if

- $\langle af_1 + bf_2, g \rangle_F = a \langle f_1, g \rangle_F + b \langle f_2, g \rangle_F$
- $\langle f, g \rangle_F = \langle g, f \rangle_F$
- $\langle f, f \rangle_F \geq 0$ with 0 iff $f = 0$
Let \mathcal{F} be a vector space over \mathbb{R}. A function $\langle \cdot, \cdot \rangle : \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{R}$ is an inner product if

1. $\langle af_1 + bf_2, g \rangle = a\langle f_1, g \rangle + b\langle f_2, g \rangle$
2. $\langle f, g \rangle = \langle g, f \rangle$
3. $\langle f, f \rangle \geq 0$ with 0 iff $f = 0$

An inner product space is a normed space with $\|f\| = \sqrt{\langle f, f \rangle}$
A Hilbert space is a complete inner product space, i.e. a Banach space with an inner product.
Hilbert space

- A Hilbert space is a complete inner product space, i.e. a Banach space with an inner product
- Example: $L_2(\mathcal{X}, \mu)$ is a Hilbert space with inner product

$$\langle f, g \rangle = \int_{\mathcal{X}} f(x)g(x) d\mu$$
Linear functional

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
Linear functional

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A : \mathcal{F} \rightarrow \mathcal{G}$ is a linear operator iff

 $A(af) = aA(f)$, $\forall a \in \mathbb{R}, f \in \mathcal{F}$

 $A(f_1 + f_2) = A(f_1) + A(f_2)$, $\forall f_1, f_2 \in \mathcal{F}$

- When $\mathcal{G} = \mathbb{R}$, A is a linear functional

Example: For a fixed $h \in \mathcal{F}$,

$A_h(f) = \langle f, h \rangle_{\mathcal{F}}$ is a linear functional
Linear functional

- Let F, G be normed vector spaces over \mathbb{R}
- A function $A : F \rightarrow G$ is a linear operator iff
 - $A(af) = aA(f)$, $\forall a \in \mathbb{R}, f \in F$
Linear functional

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A : \mathcal{F} \rightarrow \mathcal{G}$ is a linear operator iff
 - $A(af) = aA(f), \forall a \in \mathbb{R}, f \in \mathcal{F}$
 - $A(f_1 + f_2) = A(f_1) + A(f_2), \forall f_1, f_2 \in \mathcal{F}$
Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}

A function $A : \mathcal{F} \rightarrow \mathcal{G}$ is a linear operator iff

- $A(af) = aA(f)$, $\forall a \in \mathbb{R}, f \in \mathcal{F}$
- $A(f_1 + f_2) = A(f_1) + A(f_2)$, $\forall f_1, f_2 \in \mathcal{F}$

When $\mathcal{G} = \mathbb{R}$, A is a linear functional
Linear functional

- Let \mathcal{F}, \mathcal{G} be normed vector spaces over \mathbb{R}
- A function $A : \mathcal{F} \mapsto \mathcal{G}$ is a linear operator iff
 - $A(af) = aA(f)$, $\forall a \in \mathbb{R}, f \in \mathcal{F}$
 - $A(f_1 + f_2) = A(f_1) + A(f_2)$, $\forall f_1, f_2 \in \mathcal{F}$
- When $\mathcal{G} = \mathbb{R}$, A is a linear functional
- Example: For a fixed $h \in \mathcal{F}$,

$$A_h(f) = \langle f, h \rangle_{\mathcal{F}}$$

is a linear functional
Continuity

- $A : \mathcal{F} \mapsto \mathcal{G}$ is continuous at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, $\exists \delta$ s.t.

 $$\|f - f_0\|_{\mathcal{F}} < \delta \Rightarrow \|Af - Af_0\|_{\mathcal{G}} < \epsilon$$
Continuity

- $A : \mathcal{F} \rightarrow \mathcal{G}$ is continuous at $f_0 \in \mathcal{F}$, if for every $\epsilon > 0$, $\exists \delta$ s.t.
 \[\| f - f_0 \|_\mathcal{F} < \delta \implies \| Af - Af_0 \|_\mathcal{G} < \epsilon \]

- A is continuous on \mathcal{F} if it is continuous at all $f \in \mathcal{F}$
Riesz representation

In a Hilbert space \mathcal{F}, all continuous linear functionals are of the form $\langle \cdot, g \rangle_{\mathcal{F}}$, for some $g \in \mathcal{F}$.
Evaluation functional

- Let \mathcal{X} be a non-empty set
Evaluation functional

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \rightarrow \mathbb{R}$
Evaluation functional

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as
 \[
 \delta_x(f) = f(x)
 \]
 is the Dirac evaluation functional at x
Let \mathcal{X} be a non-empty set

Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \mapsto \mathbb{R}$

For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$\delta_x(f) = f(x)$$

is the Dirac evaluation functional at x

δ_x is linear:

$$\delta_x(af + bg) = (af + bg)(x) = af(x) + bg(x) = a\delta_x(f) + b\delta_x(g)$$
Evaluation functional

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as
 \[
 \delta_x(f) = f(x)
 \]
 is the Dirac evaluation functional at x
- δ_x is linear:
 \[
 \delta_x(af + bg) = (af + bg)(x) = af(x) + bg(x) = a\delta_x(f) + b\delta_x(g)
 \]
- Is δ_x continuous?
Evaluation functional

- Let \mathcal{X} be a non-empty set
- Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \mapsto \mathbb{R}$
- For a fixed $x \in \mathcal{X}$ the functional $\delta_x : \mathcal{H} \mapsto \mathbb{R}$ defined as

$$\delta_x(f) = f(x)$$

is the Dirac evaluation functional at x

- δ_x is linear:

$$\delta_x(af + bg) = (af + bg)(x) = af(x) + bg(x) = a\delta_x(f) + b\delta_x(g)$$

- Is δ_x continuous?
- ... Not necessarily
Reproducing Kernel Hilbert Space

- A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$.
Reproducing Kernel Hilbert Space

- A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$.

- The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

 $$\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \quad \forall f \in \mathcal{H}, x \in \mathcal{X}$$ (reproducing)

- Obviously,

 $$\langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = k(x, y)$$

- \mathcal{H} is an RKHS (i.e. its evaluation functionals δ_x are continuous) iff \mathcal{H} has a reproducing kernel.
Reproducing Kernel Hilbert Space

- A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$

- The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies
 - $k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$
Reproducing Kernel Hilbert Space

- A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$.

- The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

 \[
 k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}
 \]

 \[
 \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X} \text{ (reproducing)}
 \]

Obviously,

\[
\langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = k(x, y)
\]

\mathcal{H} is an RKHS (i.e. its evaluation functionals δ_x are continuous) iff \mathcal{H} has a reproducing kernel.
A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$.

The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

1. $k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$
2. $\langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X}$ (reproducing)

Obviously,

$$\langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = k(x, y)$$
A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \mapsto \mathbb{R}$ defined on a non-empty set \mathcal{X} is a Reproducing Kernel Hilbert Space (RKHS) if δ_x is continuous for all $x \in \mathcal{X}$.

The reproducing kernel of \mathcal{H} is a function $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ if it satisfies

- $k(\cdot, x) \in \mathcal{H}, \forall x \in \mathcal{X}$
- $\langle f, k(\cdot, x) \rangle_\mathcal{H} = f(x), \forall f \in \mathcal{H}, x \in \mathcal{X}$ (reproducing)

Obviously,

$$\langle k(\cdot, y), k(\cdot, x) \rangle_\mathcal{H} = k(x, y)$$

\mathcal{H} is an RKHS (i.e. its evaluation functionals δ_x are continuous) iff \mathcal{H} has a reproducing kernel.
Positive definiteness

- A symmetric function \(h : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R} \) is positive definite if
\[\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \ldots x_n \in \mathcal{X}, \]
\[a^\top H a \geq 0 \]
where \(H \) is the \(n \times n \) matrix with \(H_{ij} = h(x_i, x_j) \)
Positive definiteness

- A symmetric function $h : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if
 $\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \ldots x_n \in \mathcal{X}$,
 \[a^\top H a \geq 0 \]
 where H is the $n \times n$ matrix with $H_{ij} = h(x_i, x_j)$

- Reproducing kernels are positive definite
Positive definiteness

- A symmetric function $h : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is positive definite if
 \[\forall n, \forall a \in \mathbb{R}^n, \forall x_1 \ldots x_n \in \mathcal{X}, \]
 \[a^\top H a \geq 0 \]
 where H is the $n \times n$ matrix with $H_{ij} = h(x_i, x_j)$
- Reproducing kernels are positive definite
- Let $k : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be positive definite. There is a unique
 RKHS $\mathcal{H} = \{ f : \mathcal{X} \mapsto \mathbb{R} \}$ with reproducing kernel k
 [Moore-Aronszajn]
Representer Theorem

- Let \mathcal{X} be a non-empty set
Representer Theorem

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
Representer Theorem

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
Representer Theorem

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \ldots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
Representer Theorem

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let H_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \ldots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing
Representer Theorem

- Let \(\mathcal{X} \) be a non-empty set
- Let \(k \) be a positive definite kernel on \(\mathcal{X} \times \mathcal{X} \)
- Let \(\mathcal{H}_k \) be the corresponding RKHS
- Let training data be \((x_1, y_1) \ldots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}\)
- Let the regularizer function \(\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R} \) be strictly monotonically increasing
- Let the empirical risk function \(\hat{R} \) be arbitrary
Representer Theorem

- Let \mathcal{X} be a non-empty set
- Let k be a positive definite kernel on $\mathcal{X} \times \mathcal{X}$
- Let \mathcal{H}_k be the corresponding RKHS
- Let training data be $(x_1, y_1) \ldots (x_n, y_n) \in \mathcal{X} \times \mathbb{R}$
- Let the regularizer function $\Omega : \mathbb{R}_{\geq 0} \mapsto \mathbb{R}$ be strictly monotonically increasing
- Let the empirical risk function \hat{R} be arbitrary
- Any minimizer

$$\argmin_{f \in \mathcal{H}_k} \hat{R}((x_1, y_1, f(x_1)), \ldots, (x_n, y_n, f(x_n))) + \Omega(\|f\|)$$

admits the form

$$\sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$$
References

Graphical Models

Kernel Methods

References

Graphical Models

Kernel Methods

References

Graphical Models

Kernel Methods

- Dino Sejdinovic, Arthur Gretton, *What is an RKHS?* Online notes 2014